Course in ANSYS

Example0570

Objective:

Run the problem using different material models **Tasks**:

Run a static linear model

Run a static full nonlinear model with:

- A bilinear kinematic hardening behaviour

Topics:

Element type, Real constants, modeling,

Plot results, output graphics, nonlinear solution control

 $E = 210000 \text{N/mm}^2$ $\nu = 0.3$ L = 100 mm a = 10 mm b = 10 mm $\sigma_y = 355 \text{N/mm}^2$ F = 1000 N

Example - title

Utility Menu > File > Change Title Enter: Cantilever beam /title, Cantilever beam Image: Change Title Image: Change Title Image: Cancel Image: Concel Help OK Cancel Help ANSYS Example0570

Example - Areas

Preprocessor > Modeling > Create > Areas > Rectangle > By Dimensions Create an area given by X=(0,100) and Y=(0,10)

Example - Area

AS E NUM	FEB 11 2004
	08:31:39
r x	

Example - Operate

Preprocessor > Modeling > Operate > Extrude > Areas > Along Normal Create a volume by extruding the area 10 along its surface normal vector

Example – Mouse rotate

Rotate by holding the Ctrl key down while using the right hand mouse button

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Element Type

Preprocessor > Element Type > Add/Edit/Delete

ANSYS Computational Mechanics, AAU, Esbjerg

Example - Element Type

Preprocessor > Element Type > Add/Edit/Delete

Element Types		×
Defined Element Types:		SOLID186 element type ontions
Type 1 PLANE42		Options for SOLID186, Element Type Ref. No. 1
		Element technology K2 Reduced integr
		Element output coordinates K4 Global system
		Element formulation K6 Pure displacemnt
		User defined initial stress K10 No USTRES routh
		OK Cancel Help •
Add)ptions Dek	Press Options
Close	Help	Press Help to learn more about the
ANSYS Computational Mechani	cs, AAU, Esbiera	element. Example0570 9

Example – Real Constants

No Real Constants are necessary for pure 3D solid models!

Example - Material Properties

Preprocessor > Material Props > Material Models

Example - Material Properties

Example0570

Example - Meshing

Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines

	Element Size on P		
•	• Pick C Unpick		
Select/Pick Lines to specify mesh size for	<pre>Out = 0 Maximum = 1 Minimum = 1 Line No. = OK Apply Reset Cancel Pick All Help</pre>		

Press OK when finish with selection

ANSYS Computational Mechanics, AAU, Esbjerg

Example - Meshing

Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines

▲ Element Sizes on Picked Lines			×
[LESIZE] Element sizes on picked lines			
SIZE Element edge length			
NDIV No. of element divisions		•	
(NDIV is used only if SIZE is blank or zero)			
KYNDIV SIZE,NDIV can be changed	Ves		
SPACE Spacing ratio			
ANGSIZ Division arc (degrees)			
(use ANGSIZ only if number of divisions (NDIV) and element edge length (SIZE) are blank or zero)			
Clear attached areas and volumes	□ No		
ОК Арріу	Cancel	Help	
		Enter 2	
Press OK when finish with	n selecti	on	
Example0570		14	

Example - Meshing

Preprocessor > Meshing > Mesh > Volumes > Mapped > 4 or 6 sided

ANSYS Main Menu	ANSYS Main Menu	ANSYS Main Menu 🛞		
🔤 Preferences	📰 Preferences	🗏 Preferences 📃	Mach Maluman	
🗆 Preprocessor	Preprocessor	Preprocessor	Mesn volumes	Select individual
🗉 Element Type	🗄 Element Type			
🗄 Real Constants	Real Constants	Real Constants	💌 Pick 🖝 🔂 Unpick	lvolumes to he
Material Props	Material Props	Material Props		
Sections	Sections	Sections	• Single C Box	mashad
		Modeling		Inesheu
Meshing	Meshing	Meshing	🔿 Polygon 🔿 Circle	
🗄 Mesh Attribute	Mesh Attributes	Mesh Attributes	C Loop	
MeshTool	MeshTool	MeshTool		INB: It is often
Size Cntrls	Size Cntrls	🗄 Size Cntrls		
🔤 Mesher Opts	🔤 Mesher Opts	🔤 Mesher Opts	Count = 0	Inecessary to "Clear"
		Concatenate	Maximum = 1	
⊡ Mesh	⊡ Mesh	⊡ Mesh		the model for
Keypoints	Keypoints	Keypoints	Minimum = 1	
Z Lines	∠ Lines	Z Lines	Volu No. =	evample if Element
E Areas	E Areas	Hareas		
		E Volumes		Type or model
⊞ Mappeu ≫ Ereco		A to 6 sided	• List of Items	l i ype of model
E Volumo Swo	E Consistencia	E Consatonato		a a prostrucia ta ha
E Tot Mosh Fro	Del Concate	E Concatenate	🔘 Min, Max, Inc	geometry is to be
E Interface M		⊼ Free		
E Modify Mesh	E Volume Sween	E Volume Sween		changed
E Check Mesh	I Tet Mesh From	I Tet Mesh From		0
E Clear	Interface Mesh	Interface Mesh		
🗉 Checking Ctris	Modify Mesh	Modify Mesh		
E Numbering Ctrls	Check Mesh	Check Mesh	OV Ann las	
Archive Model	🗄 Clear	🗄 Clear	OK Abbia	
🗉 Coupling / Cegn	Checking Ctrls	⊞ Checking Ctrls		Salaat all valumaa
FLOTRAN Set Up	E Numbering Ctrls	E Numbering Ctrls	Reset Cancel	
FSI Set Up	Archive Model	Archive Model		defined to be medeled
Loads	🗄 Coupling / Ceqn	🗉 Coupling / Ceqn	Pick All Help	aetined to be meshed
Physics		🗉 FLOTRAN Set Up 🍡		
1 m n 1 n 1	1	4		
ANSYS		Example	0570	15

Example – 3D Mesh

Example0570

Example – Analysis Type

Write Database Log

File > Write DB log file

Write Database Log to Directories: Enter "example0570.lgw" c:\...\administrator *.lgw 🗁 c:\ 🗁 DOCUMENTS AN 👝 ADMINISTRATOL Cookies Dokumenter Foretrukne Solution > Analysis Type > New Analysis List Files of Type: Drives: Database Log (*.lgw) **C**: Network... • Ψ. New Analysis \times Write non-essential cmds as comments • [ANTYPE] Type of analysis Static C Modal C Harmonic O Transient C Spectrum C Eigen Buckling C Substructuring OK Cancel Help

ANSYS Computational Mechanics, AAU, Esbjerg OK.

Cancel

Help

Example – Define Loads

Solution > Define Loads > Apply > Structural > Displacement > On Areas

Example0570

Example – Define Loads

Solution > Define Loads > Apply > Structural > Force/Moment > On Nodes

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Define Loads

Solution > Define Loads > Apply > Structural > Force/Moment > On Nodes

Example - Save

Example - Solve

Solution > Solve > Current LS

Example - Solve

Example - PostProcessing

General Postproc > Plot Results > Deformed Shape

Example - PostProcessing

Read Maximum displacement: DMX

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Linear solution

Example – NL material models

Example – Bilinear kinematic hardening

Bilinear Kinematic Hardening for Material Numbe	er 1	×
Bilinear Kinematic Hardening for Material Number 1		
Stress-Strain Options	Rice's Hard. Rule	
T1 Temperature Yield Stss Tang Mods		Enter 355 as the Yield Stress
Add Temperature Delete Temperature Add	dd Row Delete Row Grap	Enter 1000 as the Tangent Modulus
Press OK ———		

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Solution Controls

Example - Solve

Solution > Solve > Current LS

Solve Current	Load Step		×
[SOLVE] Begin Solution of Current Load Step			
Review the sur "/STATUS Com	nmary information 1mand"), then pres	i in the lister w ss OK to start t	indow (entitled he solution.
	• ок	Cancel	Help
		Р	ress OK

Example - Convergence

Example – NL material solution

Example0570