Course in ANSYS

Example0303

Objective:

Compute the maximum stress von Mise **Tasks:**

How should this be modeled?

Topics:

Element type, Real constants, modeling, Plot results, output graphics, select entities $E = 210000 \text{N/mm}^2$ $\nu = 0.3$

T = 1000Nmm

Example – Read Input from

Example – Read Input from

1 LINES TYPE NUM			FEB 23 2004 21:09:03
	y s x		
· · · · · · · · · · · · · · · · · · ·			
	vampla	1203	

Example – Create Areas by line

Computational Mechanics, AAU, Esbjerg

Example – Create Areas by line

Example – Element Type

Preprocessor > Element Type > Add/Edit/Delete

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Element Type

Preprocessor > Element Type > Add/Edit/Delete

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Real Constants

No Real Constants are necessary for pure 3D solid models!

Example - Material Properties

Preprocessor > Material Props > Material Models

Example - Material Properties

Example0303

Example - Meshing

Preprocessor > Meshing > Mesh > Areas > Mapped > 3 or 4 sided

Example - Meshing

				FEB 18 2004 00:12:06
Y		F		
<u>-</u>				

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Extrude – About Axis

Example – Extrude – About Axis

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Mouse rotate

Rotate by holding the Ctrl key down while using the right hand mouse button

ANSYS Computational Mechanics, AAU, Esbjerg

Example – Volume Sweep

Example0303

Example – 3D Mesh

Example – Analysis Type

Write Database Log

File > Write DB log file

Write Database Log to Directories: Enter "example0303.lgw" c:\...\administrator *.lgw 🗁 c:\ 🗁 DOCUMENTS AN 👝 ADMINISTRATOL Cookies Dokumenter Foretrukne Solution > Analysis Type > New Analysis List Files of Type: Drives: Database Log (*.lgw) **C**: • Ψ. New Analysis \times Write non-essential cmds as comments • [ANTYPE] Type of analysis Static C Modal C Harmonic O Transient C Spectrum C Eigen Buckling C Substructuring OK Cancel Help

ANSYS Computational Mechanics, AAU, Esbjerg

OK.

Cancel

Help

Network...

Example0303

Change to Elements, Attached to, Areas, Sele All

ARISESS OK Computational Mechanics, AAU, Esbjerg

Solution > Define Loads > Apply > Structural > Force/Moment > On Nodes

Press OK ANSYS Computational Mechanics, AAU, Esbjerg

Solution > Define Loads > Apply > Structural > Force/Moment > On Nodes

Solution > Define Loads > Apply > Structural > Force/Moment > On Nodes

Note: If the model is remeshed all loads will be deleted with the element nodes

Example0303

25

Solution > Define Loads > Apply > Structural > Force/Moment > On Nodes

Example - Save

Solution > Define Loads > Apply > Structural > Displacement > On Areas

Example0303

Example - Solve

Solution > Solve > Current LS

Example - Solve

Example - PostProcessing

ANSYS Main Menu 🛞	Contour Nodal Solution Data	X	
🖾 Preferences 🔄	[PLNSOL] Contour Nodal Solution Data		
Preprocessor	Item.Comp Item to be contoured	DOE solution	
		Stress Intensity SINT	
E General Postproc		Strain-total von Mises SEQV	
Booulto Summoru		Strain-mech+thrm PlasEqvStrs SEPL	
Results Summary Read Results		Energy StressRatio SRAT	
E Failuro Critoria		Strain ener dens	
		Strain-elastic	
Deformed Shane			
E Contour Plot	KUND Items to be plotted		
Nodal Solu	· · · · · · · · · · · · · · · · · · ·	C Defehane entr	
🔤 Element Solu		o bei snape uniy	
🔤 Elem Table		Opef + undeformed	
🔜 Line Elem Res			
Vector Plot			
🗉 Plot Path Item	Fact Optional scale factor		
🕀 Concrete Plot	[/EEACET] Internolation Nodes	Select "Def+undeformed	ď
E List Results	()El Hoel () into polation house		
Query Results		• Corner only and Press OK	
🖬 Options for Outp		C Corner + midside	
Results Viewer		C all such ship	
🖾 Write PGR File			
Nodal Calcs			
Element Table	[AVPRIN] Eff NU for EOV strain		
Path Operations			
E Load Case			
Cneck Elem Snape			
Write Results BOM Operations			
E Submodeling	OK • Apply	Cancel Help	
E Sabinodening			

ANSYS Computational Mechanics, AAU, Esbjerg

Example - PostProcessing

Read Maximum displacement: DMX

ANSYS Computational Mechanics, AAU, Esbjerg