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1 Introduction

In structural mechanics the most common type of analysis is the linear static analysis

where the displacements are assumed infinitesimal and Hooke’s law is assumed valid.

However, at high load levels a number of nonlinearities may be encountered. One of the

most common of these is material nonlinearity where the stress-strain relation is nonlin-

ear. Other common nonlinearities include those arising from significant changes in the

geometry during loading. Although both material and geometric nonlinearities arise as a

result of the structure being subjected to forces of a significant magnitude they can and

should be separated and described independently of each other. Thus, it is easy to imagine

situations where the displacements are so large that the equilibrium equations must be

formulated in a coordinate system which follows the structure, while at the same time the

material remains linear elastic following Hooke’s law. This could be the case for slender

structures such as masts and antennae. On the other hand, the situation where the dis-

placements are sufficiently small to allow for the equilibrium equations to be formulated

in the original coordinate system, but where the stress-strain relation is nonlinear are just

as common. As examples, the simple tension and compression tests of many engineering

materials such as concrete, steel and soil produce stress-strain curves which are nonlinear

while the displacements are still ’small’. The same could be observed for many real struc-

tures composed of these materials.

The most challenging problems are of course those involving a combination of the above

mentioned nonlinearities and possibly others. Car crash simulation is such a problem.

Here the displacements are large while at the same time the stress levels are so high that

the stress-strain relation is nonlinear. Additionally, inertial and contact forces must be

taken into consideration. Another related problem is so-called push-over analysis of off

shore platforms. These types of problems almost always involve some sort of material non-

linearity, and thus, material nonlinearity can be viewed both as one of the most common

types of nonlinearities arising in real structures as well as a de facto prerequisite for more

advanced problems such as the above mentioned.

(e) (f)

Figure 1: Material nonlinearity: nonlinear elasticity (a) and elasto-plasticity (b).
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(a) (b)

Figure 2: Material models: Linear elastic-perfectly plastic (a) and rigid-perfectly plastic

(b).

1.1 Plasticity

Material nonlinearity itself may be subdivided into some fundamentally different cat-

egories. In nonlinear elasticity the stress-strain relation is nonlinear but otherwise the

behaviour follows that of linear elasticity, that is, no distinction is made between loading

and unloading except for the sign. This is in contrast to what is that case with plastic or

elasto-plastic materials, where irreversible strains occur. The difference between two such

materials is illustrated in Figure 1. For low stress levels both materials follow a linear

stress-strain relation. This is followed by a decrease in stiffness as the stress increases. If

however, the stress is reduced the nonlinear elastic material will follow the same stress-

strain curve as in loading, whereas unloading of the elasto-plastic material leads to a new

branch on the σ − ε curve where the material is again elastic, often with a stiffness equal

to the initial elastic stiffness. Furthermore, it is clear that when the material is completely

unloaded, an irreversible plastic strain εp remains.

The curved part above the elastic limit in Figure 1 (b) suggests that the stress-strain

relation may be of a rather complicated nature and in general this may indeed be true.

However, in practice, a number of approximations can be made. One of the most common

Figure 3: Hardening plasticity: Bauschinger effect.
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approximations is to assume linear elasticity below some limit above which the mate-

rial is perfectly plastic, i.e. the stress remains constant. This is shown in Figure 2 (a).

Another common approximation is the rigid-perfectly plastic material model. Here the

elastic strains are ignored altogether and deformations then take place only when the

stress reaches a certain level, Figure 2 (b).

Alternatively, a certain degree of hardening may be introduced such that yield stress

σ0(α), now depending on one or more hardening parameters, is continuously increased as

the plastic loading progresses. One of the most common types of hardening is described

by the so-called Baushcinger effect which can be observed in metals. This model involves

an increase in the yield stress under plastic loading while at the same time the negative

limit is lifted such that the permissible stress range remains constant. This is illustrated

in Figure 3.

For a more complete discussion of the physical foundations of plasticity we refer to Chen

and Han [1].
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2 Plasticity Theory

The theory of plasticity makes use of some fundamental concepts: the yield criterion

defining the limit at which the material becomes plastic, the flow rule describing the

relationship between stresses and strains once the material has become plastic, and the

consistency condition which prevents stresses from exceeding the yield limit.

In metal plasticity the theory necessary for describing plastic flow is particularly sim-

ple since metals are generally incompressible, insensitive to the influence of hydrostatic

pressure and furthermore, with very good approximation, follow so-called associated flow

rules. For other materials such a rocks, soils, concrete, and other granular materials the

conditions are somewhat more complicated, but nevertheless capable of being modeled

within the framework of plasticity theory. In the following the basic plasticity theory is

described and examples demonstrating the above mentioned differences are given.

2.1 The yield criterion

As described in the Section 1 an elastic limit exists above which the material becomes

plastic. In the uniaxial stress test it is easy to define this limit by the uniaxial yield stress

σ0. However, when several stress components are present and acting simultaneously, the

question of when the material becomes plastic is less easily answered. Generally, a scalar

yield function is defined as

f(σx, σy, σz, τxy, τyz, τzx, α1, ..., αn) = 0 (1)

or

f(σ, α) = 0 (2)

where σ contains the six independent stress components and α defines n specific material

parameters. The yield function (2) defines a surface in stress space, in Figure 4 illustrated

in the two-dimensional case. The convention is to define the yield function such that

f < 0 inside the yield surface and f > 0 outside it. The boundary f = 0 defines the

elastic limit, i.e. the set of maximal permissible stresses. Thus, the state of stress is given

Figure 4: Yield surface.
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by a point either inside or on the yield surface. In plastic loading with perfect plasticity

the state of stress can only be altered by a redistribution between the different stress

components such that the stress point can be imagined as sliding along the yield surface.

If hardening is present the stress point will still remain on the boundary defined by f = 0

but this boundary will be shifted according to the relevant hardening rules as the loading

progresses. In unloading the stress point moves from the boundary of the yield surface to

the inside and thus, immediately recovers its elastic properties.

2.2 Specific yield criteria

When defining the yield criterion care must be taken to ensure that a rotation of the

coordinate system does not influence the conditions at which the material yields. For the

uniaxial stress test a yield criterion may be formulated as

σx − σ0 = 0 (3)

This criterion, however, only makes sense under the assumption that that the material

is aligned in a coordinate system where all other stress components than σx are equal

to zero. Therefore, it is convenient to define yield criteria in terms of certain invariants,

that is, quantities which are not affected by a rotation of the coordinate system. These

could be the magnitude of the principal stresses. Thus, rather than using (1) it is more

convenient to write the yield criterion as

f(σ1, σ2, σ3, α1, ..., αn) = 0 (4)

where σ1, σ2, σ3 are the principal stresses. In many cases, however, it turns out to be even

more convenient to use another set of invariants, namely the invariants of the stress tensor

I1, I2 and I3 and the invariants of the deviatoric stress tensor J1, J2 and J3, see e.g. Chen

and Han [1]. Furthermore, of these invariants it turns out that especially I1 and J2 are

useful. The invariants are obtained by separating the state of stress into two components

as

σij =

⎡
⎣ σ1 − p 0 0

0 σ1 − p 0

0 0 σ1 − p

⎤
⎦ +

⎡
⎣ p 0 0

0 p 0

0 0 p

⎤
⎦ (5)

or

σij = sij + pδij (6)

where the mean stress is defined as

p = 1
3
(σ1 + σ2 + σ3) = 1

3
(σx + σy + σz) = 1

3
I1 (7)

The second invariant of sij is given by

J2 = 1
6
[(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ3 − σ1)

2]

= 1
6
[(σx − σy)

2 + (σy − σz)
2 + (σz − σx)

2] + τ 2
xy + τ 2

yz + τ 2
zx

(8)
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Figure 5: Mohr’s circles for triaxial state of stress.

Whereas pδij represents a state of hydrostatic stress the deviatoric part sij can be shown

to represent a state of pure shear, and thus, the effects on yielding of shear and hydrostatic

pressure can be effectively separated. Furthermore, the principal shear stresses are given

by, see Figure 5,

τ12 = 1
2
|σ1 − σ2|, τ23 = 1

2
|σ2 − σ3|, τ31 = 1

2
|σ3 − σ1| (9)

which, except for the factor 1
2

are the terms contained in J2. Thus, yield criteria making

use if J2 actually predict yielding to occur as a result of some combination of the principal

shear stresses exceeding a certain limit.

In the following, both examples of yield criteria developed directly from the principal

stresses as well as from I1 and J2 are given.

2.2.1 The Tresca criterion

In 1864, after having subjected metal specimens to a combination of stresses, Tresca

proposed that yielding occurs as a result of the maximal shear stress reaching a critical

value. This was formulated as

τmax = max(1
2
|σ1 − σ2|, 1

2
|σ2 − σ3|, 1

2
|σ3 − σ1|)

= max(τ12, τ23, τ31) = k
(10)

where the material parameter k can be determined by the simple tension test as

k = 1
2
σ0 (11)

In plane stress one of the principal stresses, say σ3, is equal to zero, and the yield surface

may then be plotted in σ1 − σ2 space as shown in Figure 6. The yield surface is defined

by six different expressions: When both σ1 and σ2 are greater than zero the limiting

conditions are simply
1
2
|σ1| = 1

2
σ1 = k (line AB) (12)

and
1
2
|σ2| = 1

2
σ2 = k (line BC) (13)
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Figure 6: Tresca and von Mises criteria in plane stress.

Similarly, when both σ1 and σ2 are negative, we have

1
2
|σ1| = −1

2
σ1 = k (line DE) (14)

and
1
2
|σ2| = −1

2
σ2 = k (line EF) (15)

When σ1 < 0 and σ2 > 0 the stresses are limited by

1
2
|σ1 − σ2| = 1

2
(σ2 − σ1) = k (line CD) (16)

and finally when σ1 > 0 and σ2 < 0 the criterion for yielding is

1
2
|σ1 − σ2| = 1

2
(σ1 − σ2) = k (line CD) (17)

2.2.2 The von Mises criterion

Although Tresca’s yield criterion does predict the yielding of metals quite well, an inherent

weakness is that only the maximal shear stress is considered whereas the influence of the

two lesser shear stresses is ignored. A more accurate criterion taking the all three principal

shear stresses into account is that of von Mises. In this case the yield function is given by

f(J2) =
√

J2 − k (18)

or in terms of the so-called equivalent stress σe as

f(σ) = σe − σ0 (19)

where

σe = (τ 2
12 + τ 2

23 + τ 2
31)

1
2

=
[

1
2
(σ1 − σ2)

2 + 1
2
(σ2 − σ3)

2 + 1
2
(σ3 − σ1)

2
] 1

2

=
[

1
2
(σx − σy)

2 + 1
2
(σy − σz)

2 + 1
2
(σz − σx)

2 + 3τ 2
xy + 3τ 2

yz + 3τ 2
zx

] 1
2

(20)
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Figure 7: von Mises criterion in principal stress space.

The similarities to the Tresca criterion are evident, and when plotted in plane stress,

Figure 6, the difference is seen to be rather small. When the principal stress are identical

or when one is equal to zero, the two criteria coincide. In contrast to the Tresca criterion,

von Mises’ criterion predicts that the value of one principal stress may exceed σ0 provided

that the other principal stress is adjusted accordingly.

As with the Tresca criterion, the von Mises criterion is independent of hydrostatic pres-

sure. When plotted in three dimensional principal stress space the yield surface depicts a

cylinder parallel to the hydrostatic axis σ1 = σ2 = σ3 as shown in Figure 7.

2.2.3 The Drucker-Prager criterion

Whereas hydrostatic pressure independence is a realistic assumption for metals, it fails

for other materials such as concrete and soils. Therefore Drucker and Prager formulated

a modified von Mises criterion by adding a mean stress term

f(I1, J2) =
√

J2 + αI1 − k (21)

or

f(σ) = σe + ασm − σ0 (22)

where the mean stress is given by

σm = I1 = 1
3
(σ1 + σ2 + σ3) = 1

3
(σx + σy + σz) (23)

This criterion is illustrated in Figure 8. Compared to the von Mises criterion, there is a

limit for positive (tensile) mean stresses whereas the material is strengthened by super-

position of a negative (compressive) mean stress.

2.3 Loading/unloading conditions

As already touched upon earlier the yield condition defines not only the set of permissible

stresses, but also the conditions for which plastic deformations can continue to occur.
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Figure 8: Drucker-Prager criterion in principal stress space.

Whereas all elastic stress states are located inside the yield surface and defined uniquely

by the elastic strain, plastic deformations can occur as long as the stress point is located

on the yield surface. Thus, during loading in perfect plasticity, a stress point may remain

in one fixed position on the yield surface or slide along it with redistribution of stresses

among the different components. Mathematically, the conditions for plastic loading can

be written as

f(σ + dσ) = f(σ) + ∇fT dσ = 0 (24)

where

∇f = [∂f/∂σx, ..., ∂f/∂τzx]
T (25)

is the normal to the yield surface and dσ is a stress increment, see Figure 9. Since f(σ) = 0

df = ∇fT dσ = 0 (26)

In other words, (26) states that during plastic loading the change in stress, if any, occurs

tangential to the yield surface. This is the so-called consistency condition which, as shall

be shown later, is a key ingredient in the general theory.

In unloading the state of stress immediately becomes elastic which can be written as

df = ∇fT dσ < 0 (27)

Figure 9: Plastic loading and unloading.
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Figure 10: Plastic strain increment.

That is, the angle between the normal to the yield surface and the stress increment must

be greater than 90◦.

2.4 Plastic strains

When a structure is loaded from an neutral state elastic strains first appear. The rela-

tionship between these and the stresses is given by e.g. Hooke’s law or similar, possibly

nonlinear, elastic stress-strain relations. As the loading increases and the material be-

gins to yield plastic strains will develop. At some point the load carrying capacity of the

structure becomes exhausted, e.g. for frame structures when a sufficient number of plas-

tic hinges has been formed, and at this point the plastic strains become infinitely large,

corresponding to collapse of the structure. Because of this, and because, as mentioned

in Section 1, there is no unique relation between stresses and total strains in the plastic

range, it is convenient to consider only plastic strain increments1 dεp. The total strain

increment is assumed to be the sum of the elastic strains increment and the plastic strain

increment

dε = dεe + dεp (28)

where as mentioned the elastic strain increment is related to the stresses by e.g. Hooke’s

law. As for the plastic strain increment, we can without loss of generality assume that

this can be derived from a plastic potential g as

dεp = dλ
∂g

∂σ
= dλ∇g (29)

where dλ is a positive scalar of proportionality. Similarly to the yield criterion f = 0, the

equation g = 0 can be thought of as describing a surface in stress space. Since ∇g is a

vector normal to this surface, the strain increment can be plotted as a vector normal to

the surface with a length determined by dλ, see Figure 10.

Generally, the expression for g must be determined experimentally similarly to the way

the yield function is established. This is, however, quite a demanding task, and as a first

1The term strain rate and the symbol ε̇p is also commonly used
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guess at g it would be reasonable to assume that g = f . The plastic strain increment is

then determined as

dεp = dλ
∂f

∂σ
= dλ∇f (30)

This is the so-called associated flow rule, in contrast to the nonassociated flow rule (29)

where the strains are not connected with the yield criterion. Use of the yield criterion to

derive the plastic strain increments is also refered to as the normality rule. The use of

the associated flow rule is a cornerstone in the so-called mathematical theory of plastic-

ity which was formulated around 1950 by among others Hill, Drucker and Prager. This

mathematical theory of plasticity contains some very attractive results such as the neces-

sity of a convex yield surface and the existence of the limit theorems which have been

used extensively in engineering computations. Moreover, the physical interpretation of

the results seem to comply so well with the basic thermodynamical requirement of energy

conservation that the associated flow rule in some circles has almost the status of a fun-

damental law of nature. It can be shown, however, that this is not the case, and although

very attractive, associated plasticity often fails to describe the experimentally observed

results for other materials than metals.

For the yield criteria discussed previously the plastic strain increments can now be de-

termined using the associated flow rule. For the von Mises criterion the plastic strain

increments are

dεp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dεp
x

dεp
y

dεp
z

dγp
xy

dγp
yz

dγp
zx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= dλ
1

2σe

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2σx − σy − σz

2σy − σz − σx

2σz − σx − σy

6τxy

6τyz

6τzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

where dλ again determines the magnitude of the increment.

Given a particular state of strain the relative volume change can be determined as

ΔV

V
= (1 + εx)(1 + εy)(1 + εz) − 1 � εx + εy + εz (32)

and thus, the associated von Mises flow rule predicts that no volumetric changes occur

as a result of plastic straining,2 which for metals is in good agreement with what can be

observed experimentally.

In contrast, soils, concrete and other granular materials do exhibit a volumetric dilatation

during plastic flow. This is reflected in the Drucker-Prager criterion where the plastic

2This is not to be confused with the total volumetric change. Usually the elastic contribution εe
x+εe

y+εe
z

will be different from zero.
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strain increments are given by

dεp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dεp
x

dεp
y

dεp
z

dγp
xy

dγp
yz

dγp
zx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= dλ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

2σe

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2σx − σy − σz

2σy − σz − σx

2σz − σx − σy

6τxy

6τyz

6τzx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
3
ασx

1
3
ασy

1
3
ασz

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(33)

Here the relative change in volume is

ΔV

V
= dεp

x + dεp
y + dεp

z = dλ1
3
α(σx + σy + σz) (34)

which is not necessarily equal to zero. For soils, however, the volumetric dilatation pre-

dicted by the associated Drucker-Prager flow rule is often somewhat larger than can be

verified experimentally. Therefore, a nonassociated flow rule can be used, i.e. the elastic

limit is still defined by the Drucker-Prager criterion whereas the flow rule is defined by

some other function, e.g.

f(σ) =
√

J2 + αI1 − k (35)

g(σ) =
√

J2 + βI1 − k (36)

where β should be smaller than α. The situation is illustrated in Figure 11. Another

Figure 11: Drucker-Prager plasticity with nonassociated flow rule.

example of nonassociated plasticity can be illustrated by an example from elementary

mechanics, namely the sliding on a rigid block on a rigid frictional surface as shown in

Figure 12 (a). When the dragging force exceeds the friction force the block begins to slide.

That is, at the instant of displacement the forces are related by

f = τ − μσ = 0 (37)

where μ is the coefficient of friction. This problem can be interpreted as a plasticity

problem with the possibility of yielding in a thin layer in the interface between the block

14



(a) (b)

Figure 12: Rigid block on frictional surface (a) and corresponding yield criterion and flow

rule (b).

(a) (b)

Figure 13: Mechanisms corresponding to associated (a) and nonassociated (b) flow rules.

and the surface. The yield criterion is given by (37) and shown in Figure 12 (b). The

’collapse mechanism’ can now be determined by computing the plastic strains3. If an

associated flow rule is used the strain vector dεp
f will be normal the the yield surface

f = 0 with both a normal and a shear strain component. The corresponding mechanism

is shown in Figure 13 (a). Due to the presence of a normal strain component a volume

change occurs in the block-surface interface. This is in contrast to what would be expected.

Rather than the block-surface interface layer expanding a mechanism as shown in Figure

13 (b) would be expected. This mechanism corresponds to zero normal strain, and the

flow rule g should then be as shown in 12 (b).

2.5 Incremental stress-strain relations

In computational elasto-plastic analysis one usually proceeds by applying a load incre-

ment which produces a displacement increment, and thus a total strain increment. The

stress increment corresponding to this increment in total strain can be determined by a

constitutive relation similar to the relation one has in elasticity, i.e.

dσ = Depdε (38)

3Note that for this problem the elastic strains are assumed equal to zero corresponding to the rigid
perfectly plastic material model illustrated in Figure 2 (b)
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where Dep is the elasto-plastic constitutive matrix. Such a relation was first derived and

used in an finite element context by Zienkiewicz et al. [2]. The elasto-plastic constitutive

matrix can be derived by considering the basic relations discussed in the foregoing.

The total strain increment is given as the sum of the elastic strain increment and the

plastic strain increment

dε = dεe + dεp (39)

Hooke’s law gives the relation between stresses and elastic strains as

σ = Dεe = D(ε − εp) (40)

or in rate form as

dσ = D(dε − dεp) (41)

where D is the elastic constitutive matrix. The plastic strain increment is determined by

the flow rule (29) as

dεp = dλ
∂g

∂σ
(42)

Thus, the stress increment is given by

dσ = Ddε − dλD
∂g

∂σ
(43)

The expression for the stress increment is now substituted into the consistency condition

(26) (
∂f

∂σ

)T (
Ddε − dλD

∂g

∂σ

)
= 0 (44)

Solving this equation for the scalar dλ one obtains

dλ =

(
∂f

∂σ

)T

D dε

(
∂f

∂σ

)T

D
∂g

∂σ

(45)

Finally, dλ is substituted back into (43) to yield

dσ = D

⎛
⎜⎜⎜⎝dε −

(
∂f

∂σ

)T

D dε
∂g

∂σ(
∂f

∂σ

)T

D
∂g

∂σ

⎞
⎟⎟⎟⎠ (46)

This can be rearranged to give the elasto-plastic constitutive relation

dσ =

⎛
⎜⎜⎜⎝D −

D
∂g

∂σ

(
∂f

∂σ

)T

D

(
∂f

∂σ

)T

D
∂g

∂σ

⎞
⎟⎟⎟⎠ dε (47)

16



and thus, the elasto-plastic constitutive matrix introduced in (38) is

Dep = D −
D

∂g

∂σ

(
∂f

∂σ

)T

D

(
∂f

∂σ

)T

D
∂g

∂σ

(48)

The elasto-plastic constitutive relation defines the stress increment uniquely once the total

strain increment and the current state of stress is known, whereas the a strain increment

cannot be determined uniquely on the the basis of a stress increment, i.e. Dep is singu-

lar. When used in finite element formulations (48) defines a nonlinear relation between

stress and strain increments since the evaluation of the current stress must naturally be

influenced by the magnitude of the stress increment. In this way the use of (48) leads to

a classical type of finite element nonlinearity where the current state and an increment

is known, but where the effect of the increment depends on the state that the increment

gives rise to, i.e. an iterative procedure must be applied.

2.6 Hardening

As already discussed most materials exhibit some degree of hardening as an accompani-

ment to plastic straining. In general this means that the shape and size of the yield surface

changes during plastic loading. This change may be rather arbitrary and extremely diffi-

cult to describe accurately. Therefore, hardening is often described by a combination of

two specific types of hardening, namely isotropic hardening and kinematic hardening, see

Figures 14 (a)-(b). In the following isotropic hardening related to the von Mises criterion is

treated in some detail. For the von Mises criterion isotropic hardening implies an increase

in the yield strength during plastic loading such that the yield criterion may be written

as

f(σ) − σ0(α) = 0 (49)

(a) (b)

Figure 14: Isotropic (a) and kinematic (b) hardening.
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Figure 15: Uniaxial tension test with hardening.

where α is a hardening parameter. The parameter α can be calibrated from a uniaxial

tension test. Suppose that from such a test a stress-strain curve as shown in Figure 15

has been measured. Considering the part of curve above the elastic limit the stress can

be related to the strain by the introduction of a tangent modulus Et as

dσ = Etdε (50)

The representation of the total strain as the sum of the elastic and plastic strain leads to

dσ = Et(dεe + dεp) (51)

For the elastic part of the strain increment Hooke’s law is used to give

dσ = Et

(
dσ

E
+ dεp

)
(52)

This relates the stress increment to the plastic strain increment by(
1

Et

− 1

E

)
dσ = dεp (53)

or

dσ = Hdεp (54)

where

H =
Et

1 − Et/E
(55)

Assuming isotropic hardening an increase in stress above the elastic limit is equivalent to

an increase in yield stress, and hence

dσ

dεp
=

dσ0

dεp
= H (56)

This means that α in (49) should be replaced by εp. In the multidimensional case, how-

ever, some equivalent plastic strain must be used. For the von Mises criterion a suitable

equivalent plastic strain is

dεp
eq =

√
2
3
[(dεp

1)
2 + (dεp

2)
2 + (dεp

3)
2] (57)
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By using the associated flow rule this equivalent plastic strain can be shown be be equal

to the plastic multiplier

dεp
eq = dλ (58)

For the uniaxial tension test with dεp
2 = dε3 = −1

2
dεp

1 the equivalent plastic strain is then

given by dεp
eq = dεp

1 = dλ.

The relation (56) can now be rewritten as

dσ0

dεp
eq

=
dσ0

dλ
= H (59)

Integration of (59) yields

σ0 =

∫
Hdεp

eq (60)

That is, at any given instant the yield strength is determined by the prior plastic strain

history. This means that isotropic hardening is irreversible; once the material has experi-

enced a certain degree of hardening the yield limit is shifted permanently. As this may not

be in accordance with reality the isotropic hardening can be supplemented with kinematic

hardening which is, however, a somewhat more demanding model to calibrate.

Isotropic hardening is easily included into the elasto-plastic stress-strain relation (47) by

considering the appropriate consistency condition. For (49) this is

∂f

∂σ
dσ − ∂σ0

∂α
dα = 0 (61)

or
∂f

∂σ
dσ − Hdλ = 0 (62)

This leads to the following elasto-plastic constitutive relation

dσ =

⎛
⎜⎜⎜⎝D −

D
∂g

∂σ

(
∂f

∂σ

)T

D

H +

(
∂f

∂σ

)T

D
∂g

∂σ

⎞
⎟⎟⎟⎠ dε (63)

Here it is clearly seen that for H tending to infinity the usual linear elastic constitutive

matrix D is recovered while H = 0 of course corresponds to the elastic-perfectly plastic

case (47). It should be noted that while for perfect plasticity Dep is singular, the introduc-

tion of hardening results in a unique relationship between infinitesimal stress and strain

increments such that this singularity is removed. The inverse of Dep can be found by use

of the Sherman-Morrison formula which states that

(A − uvT )−1 = A−1 +
A−1uvT A−1

1 − vT A−1u
(64)

where A is an n × n matrix and v and u are vectors of length n. The inverse of Dep can

then be written as

(Dep)−1 = D−1 +
1

H

∂g

∂σ

(
∂f

∂σ

)T

(65)

which is clearly finite only for values of H different from zero.
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2.7 Plane stress versus plane strain

The yield criteria discussed in the above were all formulated with reference to the most

general triaxial stress state. Under certain circumstances, however, the number of variables

can be reduced. This is for example the case in plane stress, plane strain and under

axisymmetric conditions. In the following the two former states are treated.

In plane stress only in-plane stresses are considered. This means that

σz = τyz = τzx = 0 (66)

The corresponding plane stress yield criterion is then obtained by simply deleting the

above stress components from the general triaxial yield criterion. In this way von Mises’

yield criterion can be written as

f =
√

σ2
x + σ2

y − σxσy + 3τ 2
xy − σ0 (67)

Here it should be noted, however, that when computing the plastic strain increments

reference must again be made to the general triaxial criterion, i.e. dεp
z, dγp

yz, dγp
zx are not

necessarily equal to zero, and the same is of course the case with respect to the elastic

strains.

In plane strain we have

εz = γyz = γzx = 0 (68)

If this is to be valid for all strains it must hold that

dεe
z = dγe

yz = dγe
zx = 0 (69)

and

dεp
z = dγp

yz = dγp
zx = 0 (70)

In associated plasticity the relation between the plastic strain increments and the yield

function now makes it possible to determine a two-dimensional yield criterion as in the

case of plane stress. Again von Mises’ criterion is considered, and according to (31) the

plastic strain increments are here given by

dεp
z = dλ

1

2σe
(2σz − σx − σy)

dγp
yz = dλ

1

2σe
6τyz

dγp
zx = dλ

1

2σe

6τzx

(71)

Whereas it follows directly from the plastic shear strain increments that the corresponding

shear stresses should be deleted from the yield criterion, the expression for dεp
z gives a

condition for the normal stresses as

σz = 1
2
(σx + σy) (72)
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This is now substituted into the general von Mises criterion to yield the following plane

strain criterion √
3
4
(σx − σy)2 + 3τ 2

xy − σ0 = 0 (73)

If σy = τxy = 0 the uniaxial yield strength is

σmax
x = 2√

3
σ0 � 1.15σ0 (74)

The deviation between this value and what is obtained in plane stress stems from the fact

that σz is different from zero, in fact, (72),

σz = 1
2
(σx + σy) = 1√

3
σ0 (75)

In this way σz is ’chosen’ as having an optimal value such that the yield strength becomes

as large as possible. Similarly, if σx = σy and τxy = 0 the magnitude of σx and σy is

unlimited, corresponding to σz being chosen such that a hydrostatic pressure appears.

That σz is always chosen in an optimal way can be verified by realizing that the solution

to the problem

max
σz

σe (76)

is found in exactly the same way as by use of the associated flow rule, namely by setting

the derivative of σe with respect to σz equal to zero and solving for σz.
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3 Finite element implementation

The implementation of the elasto-plastic constitutive relations in a finite element context

requires the consideration of two different levels, in the following called the global level

and the material level respectively. On the global level equilibrium must be satisfied as in

any other linear or nonlinear finite element computation, whereas on the material level

the plasticity relations must be satisfied.

Performing the finite element discretization in the usual way, see e.g. Zienkiewicz and

Taylor [3], one ends up with the following equation system

Ku = f (77)

where f is the applied force and K is the stiffness matrix given by

K =

∫
Ω

BTD̂
ep

B dΩ (78)

Since the constitutive matrix D̂
ep

depends on the current state of stress the stiffness

matrix is nonlinear. Moreover, since the response of the system depends of the deformation

history, an incremental relationship between displacement and force is needed, i.e.

KtΔu = Δf (79)

Here Kt is the tangent stiffness matrix, i.e. a linearization of the exact nonlinear stiffness

matrix (78). The computations now proceed by applying a load load increment Δf and

computing the corresponding displacement increment from (79). This is illustrated in

Figure 16.

The strain increment is computed in the usual way as

Δε = BΔu (80)

Next, the stresses are computed. This is done via the elasto-plastic constitutive relation

(48)

dσ = Depdε (81)

Figure 16: Load step in elasto-plastic computation
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This is nonlinear relation since Dep depends on the current stress state and generally,

iterative procedures must thus be used. These are treated in detail in the following Section.

Assuming that the stresses have been computed the internal force vector can then be found

as

q =

∫
Ω

BT σ dΩ (82)

This must be balanced by the total applied load, i.e. the residual

r = q − f (83)

must vanish. If the residual is different from zero it is applied as an external load following

the well-known Newton-Raphson procedure. This then gives a new strain increment and

a corresponding new stress increment which must be determined via the nonlinear elasto-

plastic constitutive relation (48), a new residual is computed and so on until the residual

becomes sufficiently small. The procedure can be sketched as follows

1. Apply load increment Δf and find displacement and strain increments Δu and Δε.

2. Determine stress increment Δσ from (48).

3. Compute residual r.

4. If ||r|| > TOL set Δf = −r and return to 1.

Thus, the computation of a load step requires a global iterative procedure where the

out of balance force, or residual, must vanish (steps 1 to 4), as well as a procedure to

compute the stress increments (step 2). The latter of these can of course be modified and

substituted independent of the iterations on the global level, and in contrast to the global

equilibrium iterations the stress update is performed independently in each Gauss point.

In the following a number of procedures to compute the stress increment given a strain

increment are discussed.

3.1 Integration of the constitutive relations

3.1.1 Explicit integration

The equation (48) gives the relation between infinitesimal stress and strain increments as

dσ = Dep(σ)dε (84)

Considering finite increments Δσ and Δε we wish to integrate (84) such that the stress

increment is found as ∫ σj+Δσ

σj

dσ = Δσ =

∫ εj+Δε

εj

Depdε (85)

where index j refers to the initial state. The problem with this integration is that Dep

depends on the current stress. Therefore, an approximate solution procedure has to be

employed. The simplest possible approximation to (85) is

Δσ = Dep(σj)Δε (86)
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Figure 17: Explicit integration of the constitutive relation.

Figure 18: Basic principle of stress update.

The new stresses are then updated as

σj+1 = σj + Δσ (87)

Alternatively, the strain increment could be divided into a number of equal subincrements

δε =
Δε

N
(88)

and the stresses would then be updated as

δσ = Dep(σj)δε, σj+1 = σj + δσ (89)

If the number of subincrements N is significant this of course improves the accuracy over

(86) but there is still the possibility that errors may accumulate and the stresses drift

away from the yield surface, thus violating the yield condition as illustrated in Figure 17.

3.1.2 Return algorithms

One way of avoiding this is, instead of operating directly on Dep, to solve step by step the

equations involved in the derivation of Dep. The basic equation needed is the expression

for the stress increment given a total strain increment, (43),

dσ = Ddε − dλD
∂g

∂σ
(90)
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This expression is now integrated to yield

Δσ = DΔε −
∫ λ+Δλ

λ

D
∂g

∂σ
dλ (91)

or

Δσ = Δσe − Δσp (92)

where

Δσe = DΔε and Δσp =

∫ λ+Δλ

λ

D
∂g

∂σ
dλ (93)

Here Δσe is usually called the elastic predictor and Δσp the plastic corrector. Equation

(91) implies an integration of the stresses along a path from the initial stress point to the

final stress point. Since this path is of course unknown an approximation to the plastic

corrector has to be used. This approximation may be written as

Δσp � ΔλD

(
∂g

∂σ

)
P

(94)

where index P denotes a point on the integration path. The question is now how this

point should be chosen. An obvious choice is the final stress point as shown in Figure 18,

such that (91) is written as

Δσ = DΔε − ΔλD

(
∂g

∂σ

)
C

(95)

Thus, from a point A lying inside or on the yield surface an elastic predictor is applied.

This leads to a state of stress outside the yield surface, point B. To fulfill the yield

condition a plastic corrector is applied, thus returning the stresses to the yield surface,

point C. The plastic corrector is determined by two quantities, the scalar Δλ giving the

magnitude, and the gradient of the loading surface (∂g/∂σ)C giving the direction. The

magnitude, i.e. Δλ, is determined such that the yield condition is fulfilled

f(σC − Δσp) = 0 (96)

where Δσp is given by

Δσp = ΔλD

(
∂g

∂σ

)
C

(97)

Considering a Taylor expansion of the yield function around point B we have

f(σC) = f(σB − Δσp) � f(σB) −
(

∂f

∂σ

)T

B

Δσp = 0 (98)

Inserting the expression for Δσp into this and solving for Δλ gives a step size of

Δλ =
f(σB)(

∂f

∂σ

)T

B

D

(
∂g

∂σ

)
C

(99)
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If the gradients of f and g are constant between points B and C it is possible to obtain a

closed form solution. This is the case for circular yield surfaces such as the von Mises crite-

rion in triaxial stress, where the method was first used by Krieg and Krieg [4] and named

the radial return algorithm. If the gradients are not constant along the line connecting B

and C the same general principles still apply, but iterations must now be performed. The

procedure is outlined in Table 1. It should be noticed that the requirement that Δσp

be a vector between points B and C and normal to the loading surface in point C is not

fulfilled, see Figure 19.

3.1.3 Implicit methods

In the precious Section it was demonstrated how, if the gradients of f and g are not

constant between points B and C, the application of the radial return method leads

to violation of the condition that total plastic correction increment is normal to the

loading surface. This requirement can, however, be met if a full Newton-Raphson iterative

procedure is applied. The equations to be solved are

p = Δσ − DΔε + DΔλ∇g(σA + Δσ) = 0 (100)

Initial point σ0

Iterations j = 0, . . . , n

Δλ = f(σj)
((∂f/∂σ)j)T D(∂g/∂σ)j

Δσp = ΔλD(∂g/∂σ)j

σj+1 = σj − Δσp

Until f(σj+1) < ε

Table 1: Radial return algorithm.

Figure 19: Radial return method for non-constant gradient between points B and C.
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where ∇g is the gradient of g. Furthermore, the yield condition must be satisfied

q = f(σA + Δσ) = 0 (101)

These two nonlinear equations are now solved using Newton’s method. With this method

a set of nonlinear equations

f(x) = 0 (102)

is solved iteratively as

J jΔxj = −f (xj), xj+1 = xj + Δxj+1 (103)

where J is the Jacobian of f

J =

⎡
⎢⎢⎣

∂f1/∂x1 . . . ∂f1/∂xn

...
. . .

...

∂fn/∂x1 . . . ∂fn/∂xn

⎤
⎥⎥⎦ = ∇fT (104)

and j refers to the iteration number.

Thus, the solution of (100)-(101) is realized as

⎡
⎣ I + ΔλD∇2g D∇g

∇fT 0

⎤
⎦

j ⎡
⎣ δσj

δλj

⎤
⎦ =

⎡
⎣ −pj

−qj

⎤
⎦ (105)

Δσj+1 = Δσj + δσj

Δλj+1 = Δλj + δλj
(106)

where it is seen that the curvature of the loading surface is now also taken into consider-

ation by the term ∇2g.

If the iterations are started from Δσ0 = DΔε and Δλ = 0 the first increment must

satisfy ⎡
⎣ I D∇g(σB)

∇f(σB)T 0

⎤
⎦

0 ⎡
⎣ δσ0

δλ0

⎤
⎦ =

⎡
⎣ 0

−f(σB)

⎤
⎦ (107)

The solutions to this system is

δλ0 =
f(σB)

∇f(σB)T D∇g(σB)
, δσ0 = −δλ0D∇g(σB) (108)

which corresponds exactly to what was obtained with the radial return algorithm. Thus,

if the first order Taylor approximation of the residuals is exact, i.e. the gradients of f and

g are constant, only one Newton step is required. The situation where more than one step

is needed is depicted in Figure 20. As shown, subincrements δσ and δλ are computed in

each iteration after which the physical stress increment Δσ is updated. At convergence

the stress state is updated as σC = σA+Δσ, and the final stress state is thus independent

of the path defined by the subincrements.
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Figure 20: Implicit return algorithm.

3.1.4 Accuracy of return algorithms

The next question which arises is to how accurate the above algorithm is in relation to

the exact incremental elasto-plastic constitutive stress-strain relation (47).

The basic principle was to approximate the infinitesimal stress-strain relation

dσ = D(dε − dεp) (109)

in terms of finite increments

Δσ = D(Δε − Δεp) = Δσe − ΔλD

(
∂g

∂σ

)
P

(110)

In the previous Section the point P was taken as the final point C. However, a more

refined choice is to represent the gradient by some average across the increment. That is,

if yielding has already occurred once before, the gradient should be taken as an average

between the previously established point and the new unknown point. Alternatively, if we

start from an elastic state the gradient used could be an average between the gradient in

the intersection between the yield surface and the elastic predictor and the gradient in

the final stress state. This can be expressed as

∇gav = (1 − θ)∇g(σA′) + θ∇g(σC) (111)

where σC = σA + Δσ is the point to be found and σA′ is a previously established point.

Clearly, θ = 1 corresponds to the algorithm discussed in the above. Alternatively, the

gradient may computed using an average stress over the increment, i.e.

∇gav = ∇g [(1 − θ)σA′ + θ(σC)] (112)

This, however, corresponds to evaluation of the gradient in a point which lies inside the

yield surface. Again, θ = 1 corresponds to the first implicit algorithm. Both averaging

schemes are easily implemented in an iterative procedure similar to the one shown above.

Experience has shown that for small i-ncrements θ � 0.5 gives the highest accuracy, while

for larger increments θ should be chosen as being slightly higher. The average gradient

28



Figure 21: Return along average gradient. Dashed line corresponds to θ = 1

rule (111) is illustrated in Figure 21. It should be noted that in contrast to the case

where θ = 1 it is necessary to determine the intersection between the yield surface and

the equivalent elastic stress vector. This can in some cases be done analytically or else

requires an iterative procedure in itself.

3.2 Solution of nonlinear finite element equations

Since the elasto-plastic constitutive matrix Dep depends on the current state of stress

implementation of plasticity in a finite element context generate nonlinear systems of

equations. These can be solved by the methods discussed in the following.

3.2.1 Newton’s method

Newton’s method4, which has already been discussed, is the most basic method for the

solution of nonlinear equations. The method starts by considering a linearization of the

equations around the current point after which an approximate solution to the linearized

system is computed. This leads to a solution which does not necessarily satisfy the non-

linear equations but rather generates a residual. With Newton’s method this is accounted

for by once again linearizing the equations, now around the new point after which the

procedure is repeated. As a example, consider the scalar equation of one variable

f(x) = 0 (113)

We will define the residual as

r = f(x) (114)

implying that when the solution is found r vanishes. Starting from a point x0 a lineariza-

tion is made

f(x) � f(x0) + f ′(x0)(x − x0) = 0 (115)

or

f(x) � r(x0) + f ′(x0)Δx0 = 0 (116)

4Newton’s method after Isaac Newton (1643-1727) who first described the method is also commonly
referred to as the Newton-Raphson method after Joseph Raphson (1648-1715) who first published it.
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Figure 22: Newton’s method in one dimension

where Δx0 = x − x0. The solution to this equation is

Δx0 = −(f ′(x0))−1r(x0) (117)

and the current point is then updated as

x1 = x0 + Δx0 (118)

A new residual is computed and the procedure repeated until convergence. The method

is illustrated in Figure 22. In multiple dimensions the solution to a set of equations

f(x) = 0 (119)

where f = [f1(x), ..., fn(x)]T and x = [x1, ..., xn]T is required. Here the method can be

generalized such that the iterative solution takes the form

Δxj = −J−1r(xj), xj+1 = xj + Δxj (120)

where the Jacobian is given in (104). A thorough discussion of the limitations and possible

extensions to Newton’s method, both in one as well as in several dimensions, can be found

in Nash and Sofer [5].

Turning the attention to the nonlinear finite element equations the end goal is here to

find solutions satisfying equilibrium. That is, the force resultant of the internal stresses

must balance the externally applied loads. This is expressed as

rk+1 = qk+1 − f k+1 = 0 (121)

where index k refers to an already established equilibrium state such that k+1 is the new

equilibrium state that we wish to find. The internal force vector qk+1 may be written as

qk+1 = q(uk + Δuk) (122)

and the external force vector as

f k+1 = fk + Δf k (123)
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where Δf k, in contrast to Δuk, is considered known.

Applying Newton’s method we have

(
dq

d(Δuk)

)T

j

δuj
k = −q(uk + Δuj

k) + (f k + Δf k) (124)

where index k refers to the load step number, and j is the iteration number. For conve-

nience in notation the indices on Δu are temporarily dropped in the following.

The Jacobian, or tangent stiffness matrix, is determined as

Kt =

(
dq

d(Δu)

)T

=

∫
Ω

BT

(
d(σ(uk + Δu))

d(Δu)

)T

dΩ

=

∫
Ω

BT

(
d(σk + Δσ)

d(Δu)

)T

dΩ

=

∫
Ω

BT

(
d(Δσ)

d(Δu)

)T

dΩ

=

∫
Ω

BT

(
d(Δσ)

d(Δε)

)T

BdΩ

(125)

From the incremental elasto-plastic constitutive relation we have

dσ = Depdε (126)

or since dσ = d(σk + Δσ) = d(Δσ) and dε = d(εk + Δε) = d(Δε)

d(Δσ) = Depd(Δε) (127)

and thus,

Kt =

∫
Ω

BT DepBdΩ (128)

However, in determining the stress increment corresponding to a given strain increment

at the material level the elasto-plastic constitutive matrix was not used directly; in fact,

it may be argued that Dep is an unnecessary quantity. Rather, an elastic predictor was

applied followed by a plastic corrector such that the consistency condition was satisfied.

Using this principle a slightly different stiffness matrix consistent with the material point

stress updating can be determined, see Section 3.3.

Rewriting (124) we have

Kk,j
t δuj

k = −q(uk + Δuj
k) + (f k + Δfk) (129)
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where again k refers to the global load step and j to the iterations. In order to start the

iterations an initial value of Δu0
k is needed. This is usually done by setting Δu0

k = 0. In

the first iteration the system to be solved is then

Kk,0
t δu0

k = −q(uk) + (fk + Δf k) (130)

Since at the last converged step k the internal force vector is balance by the external load,

−q(uk) + fk = 0, we have

Kk,0
t δu0

k = Δf k (131)

This equation system is now solved and the displacement increment updated as

Δu1
k = Δbsu0

k + δu0
k (132)

The strain increment is then determined as

Δε1
k = BΔu1

k (133)

With this strain increment it is now possible, by the methods discussed in Section 3.1,

to compute a stress increment, and thereby the total stress σ1
k+1. This is then in turn

used to compute a new internal force vector and thus a new right hand side of (129).

Furthermore the tangent stiffness matrix is updated. The complete iterative procedure

is outlined in Table 2. The graphical interpretation of the method for a problem with

one displacement variable is shown in Figure 23 (a) where the subscripts k indicating the

load step number have been dropped. In practice the so-called modified Newton-Raphson

(a) (b)

Figure 23: Solution of one-dimensional nonlinear equation by Newton-Raphson (a) and

modified Newton-Raphson (b) methods.

method is often used. The modification consists of computing the tangent stiffness matrix
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Initialize u0 = 0,f0 = 0

Load steps k = 0, . . . , kmax

Force increment: Δfk

Initialize: Δu0
k = 0,Δλ0

k = 0

Iterations j = 0, . . .

Tangent stiffness: Kk,j
t

Residual: rj
k = q(uk + Δuj

k) − (fk + Δfk)

Solve: Kk,j
t δuj

k = −rj
k

Update: Δuj+1
k = Δuj

k + δuj
k

Δεj+1
k = BΔuj+1

k

Material point iterations

Compute: σj+1
k+1, Δλj+1

k

Until ||rj
k|| < ε||fk + Δfk||

Update: uk+1 = uk + Δuj+1
k

fk+1 = fk + Δfk

End load step

Table 2: Newton-Raphson method for elasto-plastic problems.

only once in the beginning of each load step rather than in each iteration as shown in

Figure 23 (b). If relatively small steps are used, and this is often necessary both for the

full and modified schemes, the difference between the two methods is quite small, and the

additional number of iterations required with the modified scheme is usually more than

compensated for by avoiding the often costly procedure of computing and factorizing the

tangent matrix in each iteration. The two schemes can also be combined such that if the

convergence becomes too slow a switch is made to the full Newton-Raphson procedure.

It should be mentioned that the modified Newton-Raphson scheme is used almost exclu-

sively in the field of structural mechanics. For other nonlinear problems especially those

involving a time dependence such as e.g. transient nonlinear diffusion type problems it is

usually necessary to employ the full Newton-Raphson procedure, and even then one may

have to resort to supplementary procedures such as line search to obtain convergence.

3.2.2 General solution procedures

Starting with Newton’s method as the basic procedure for solving nonlinear equations a

number of more advanced methods have been developed for structural analysis. These

have the common feature that in each load step not only the displacement increment but

also some optimal magnitude of the load increment is found. Newton’s method in the

form considered in the above aims at determining a displacement increment for a fixed
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(a) (b)

Figure 24: Failure of Newton-Raphson method (a) and general principle in simultaneous

iterative adjustment of both load and displacement.

load increment such that the system is in equilibrium, that is we require the solution of

r = q(uk + Δuj
k) − (fk + Δf k) = 0 (134)

However, if it turns out to be more convenient a solution to

r = q(uk + Δuj
k) − (fk + ξΔf k) = 0 (135)

where ξ is a positive scaling factor, would also be satisfactory. The motivation for consid-

ering such a system is two fold. First of all, with Newton’s method the load continuously

increases which means that if the load-displacement curve has a peak the method fails as

illustrated in Figure 24 (a). Furthermore, in plasticity the load-displacement curve flattens

out near collapse and in order to trace this part of the curve the load increment has to be

adjusted, either manually in the beginning of each load step, or automatically in the itera-

tions as illustrated in 24 (a). Secondly, it turns out that with some sort of load control the

total number of iterations can usually be decreased quite significantly as opposed to the

situation where the load increment is fixed. This feature is similar to the improvements

one can obtain from using line search. Generally, Newton’s method in multiple dimensions

works well if the initial point is close to the solution. Otherwise convergence may be very

slow or the solution may even diverge. For a system on nonlinear equations

f(x) = 0 (136)

iterative increments are found by solution of

∇fT
j Δxj = −f (xj) (137)

Instead of updating x in the usual way by simply adding the increment Δxj to xj it may

be useful to introduce a damping parameter such that x is updated as

xj+1 = xj + ξΔxj (138)
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where the damping parameter ξ is determined on the basis of some optimality criterion

ensuring that progress towards the solution is made in each iteration. A commonly used

criterion states that ξ should be chosen as to minimize some norm of the residual, for

example

min
ξ

1
2
[f (xj + ξΔxj)]T f(xj + ξΔxj) (139)

The solution to this problem is found by setting the derivative with respect to ξ equal to

zero. As an approximation a commonly applied criterion is

(Δxj)T f(xj + ξΔxj) = 0 (140)

from which ξ is determined and x updated accordingly. This condition also has the inter-

pretation that the residual should be orthogonal to the increment.

In the current context of elasto-plasticity Krenk’s orthogonal residual procedure [6] has

proven to be rather efficient. Here the magnitude of the load increment is determined by

a similar criterion, namely that the current residual should be orthogonal to the current

displacement increment

(Δuj
k)

T [q(uk + Δuj
k) − (f k + ξΔfk)] = 0 (141)

From this criterion ξ is determined as

ξ =
(Δuj

k)
T [q(uk + Δuj

k) − f k]

(Δuj
k)

T Δf k

(142)

This defines a new residual

r = q(uk + Δuj
k) − (fk + ξΔfk) (143)

which is then used to compute the increment δuj
k. Thus, the orthogonal residual procedure

requires a minimum of extra computations compared to the classical Newton-Raphson

method. In order to compute the initial value of ξ an initial displacement increment is

needed. An obvious choice is

Δu0
k = (Kk,0

t )−1Δf k (144)

corresponding to ξ = 1. It is also possible to define the magnitude of the initial displace-

ment increment empirically of the basis of some reference increment and the number of

iterations used in the previous load increment. More details about the orthogonal residual

procedure can be found in Krenk [7, 8]. Other related methods such as Riks’ arc length

method are described in Crisfield [9].

3.3 Consistent tangent matrix

In Section 3.1 it was demonstrated how the updating of stresses by

Δσ = DepΔε (145)
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could lead to states of stresses not satisfying the yield condition. So rather than using

(145) directly a procedure of applying an equivalent elastic stress increment followed by

a plastic corrector was used. That is, the stresses were updated as

Δσ = DΔε − ΔλD∇g(σk + Δσ) (146)

where Δλ was determined such that the new point would satisfy the yield criterion. Index

k refers to a previously established point, i.e. point A in (100).

A tangent matrix based on this stress updating scheme can then be derived. To do this a

function Π is defined as

Π = −Δσ + DΔε − ΔλD∇g(σk + Δσ) = 0 (147)

Differentiation gives

d(Π) =

(
∂Π

∂(Δε)

)T

d(Δε) +

(
∂Π

∂(Δσ)

)T

d(Δσ) +

(
∂Π

∂(Δλ)

)T

d(Δλ) = 0

= −d(Δσ) + Dd(Δε) − ΔλD∇2g(σ)d(Δσ) − D∇g(σ)d(Δλ) = 0

(148)

where σ = σk + Δσ is the final stress state. This now gives a relation between d(Δσ)

and d(Δε) as

[I + ΔλD∇2g(σ)]d(Δσ) = Dd(Δε) − d(Δλ)D∇g(σ) (149)

The factor d(Δλ) may be determined via the consistency condition

∇f(σ)T d(Δσ) = 0 (150)

Elimination of d(Δλ) between (149) and (150) gives a relation between d(Δσ) and d(Δε)

as

d(Δσ) = Dep
c d(Δε) (151)

where

Dep
c = Dc −

Dc
∂g

∂σ

(
∂f

∂σ

)T

Dc

(
∂f

∂σ

)T

Dc
∂g

∂σ

(152)

and

D−1
c = D−1 + Δλ∇2g(σ) (153)

Thus, the consistent tangent matrix differs only from (48) in the term Dc.

In order to utilize the full potential of the consistent tangent matrix a full Newton-Raphson

procedure, with update of the tangent matrix in each iteration, should be used. With the

modified Newton-Raphson scheme some improvement may also be achieved provided that

good estimate of Δλ and the final stress state is made.
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4 Example

In the following an elasto-plastic analysis of the beam structure shown in Figure 25 is

given. The material is assumed to be elastic-perfectly plastic following the von Mises

criterion with associated flow rule. The yield strength-stiffness ratio is σ0/E = 0.1%

corresponding approximately to mild steel, and Poison’s ration is ν = 0.3.

Figure 25: Beam structure.

The load is continuously increased to a point very near collapse after which the structure

is unloaded completely. For the global iterations the orthogonal residual procedure is used

and on the material level the stresses are updated by means of the radial return algorithm.

The load-displacement curve for the vertical displacement of the center point is shown in

Figure 26 where λ = 1.0 corresponds to the intensity of the load p at collapse and the

displacement has been normalized with respect to the displacement the point of initial

yielding. The structure first begins to yield at around λ = 0.5, that is for a load which is
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Figure 26: Load displacement curve.

approximately half the ultimate load. As the load is increased the structure begins to yield

and the stiffness decreases. The evolution of the plastification is shown in Figures 27 (a)-

(d). Just before the load carrying capacity becomes exhausted the structure is unloaded

corresponding to the load being removed all together. As seen from the load-displacement

curve the structure again reacts elastically with a stiffness corresponding to the initial
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(a) Step 5: λ = 0.673 (b) Step 10: λ = 0.920

(c) Step 20: λ = 0.986 (d) Step 30: λ = 0.999

Figure 27: Yielding of beam structure.

elastic stiffness. However, since the magnitude of this unloading, λ = −1.0, is twice

that initially resulting in yielding there is the possibility that rather high stresses may

develop upon unloading. In fact, near the left support the stresses again reach a magnitude

corresponding to yielding. In Figure 28 the normal stresses in a point in the vicinity of the

left support are traced. The Figure describes the same as the load-displacement curve: an

initially linear elastic response followed by yielding where the ratio between the two stress

components change. At unloading a path parallel to the initial elastic path is followed, and

just before the load is removed completely the stresses reach a magnitude corresponding to

yielding on the opposite’ side of the yield surface. Thus, at the point where the load is zero,

significant stresses still exist within the structure. These are of course in self-equilibrium,

i.e. in equilibrium with zero external load.
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Figure 28: Normal stresses at point near left support.
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5 Solutions of nonlinear FE–equations

5.1 Implementation of modified Newton-Raphson method for elasto-

plasticity

u1 = 0,σ1 = 0,f1 = 0 initial state

for k = 1:kmax begin load increments

Kt = tangentstiff(σk)

Δu = K−1
t Δfk

for j = 1:jmax begin iterations

Δε = strain(Δu)

σk+1 = returns(σk,Δε) new stress state

q = intforce(σk+1)

r = (fk + Δfk) − q

if ||r|| < ε ||fk + Δfk|| check convergence

break convergence

else continue iterations

δu = K−1
t r

Δu = Δu + δu

end

end end iterations

uk+1 = uk + Δu update

fk+1 = fk + Δfk

end end load step

Table 3: Modified Newton-Raphson method.
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