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Preface

CALFEM©R is an interactive computer program for teaching the finite element method
(FEM). The name CALFEM is an abbreviation of ”Computer Aided Learning of the Finite
Element Method”. The program can be used for different types of structural mechanics
problems and field problems.

CALFEM, the program and its built-in philosophy have been developed at the Division of
Structural Mechanics starting in the late 70’s. Many coworkers, former and present, have
been engaged in the development at different stages, of whom we might mention

Per-Erik Austrell H̊akan Carlsson Ola Dahlblom
Jonas Lindemann Anders Olsson Karl-Gunnar Olsson
Kent Persson Anders Peterson Hans Petersson
Matti Ristinmaa Göran Sandberg

The present release of CALFEM, as a toolbox to MATLAB, represents the latest develop-
ment of CALFEM. The functions for finite element applications are all MATLAB functions
(M-files) as described in the MATLAB manual. We believe that this environment increases
the versatility and handling of the program and, above all, the ease of teaching the finite
element method.

Lund, November 22, 2000

Division of Structural Mechanics and Division of Solid Mechanics
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1 Introduction

The computer program CALFEM is a MATLAB toolbox for finite element applications.
This manual concerns mainly the finite element functions, but it also contains descriptions
of some often used MATLAB functions.

The finite element analysis can be carried out either interactively or in a batch oriented
fashion. In the interactive mode the functions are evaluated one by one in the MATLAB
command window. In the batch oriented mode a sequence of functions are written in a file
named .m-file, and evaluated by writing the file name in the command window. The batch
oriented mode is a more flexible way of performing finite element analysis because the
.m-file can be written in an ordinary editor. This way of using CALFEM is recommended
because it gives a structured organization of the functions. Changes and reruns are also
easily executed in the batch oriented mode.

A command line consists typically of functions for vector and matrix operations, calls to
functions in the CALFEM finite element library or commands for workspace operations.
An example of a command line for a matrix operation is

C = A + B′

where two matrices A and B’ are added together and the result is stored in matrix C .
The matrix B’ is the transpose of B. An example of a call to the element library is

Ke = bar1e(k)

where the two-by-two element stiffness matrix Ke is computed for a spring element with
spring stiffness k, and is stored in the variable Ke. The input argument is given within
parentheses ( ) after the name of the function. Some functions have multiple input argu-
ments and/or multiple output arguments. For example

[lambda,X] = eigen(K,M)

computes the eigenvalues and eigenvectors to a pair of matrices K and M. The output
variables - the eigenvalues stored in the vector lambda and the corresponding eigenvectors
stored in the matrix X - are surrounded by brackets [ ] and separated by commas. The
input arguments are given inside the parentheses and also separated by commas.

The statement

help function

provides information about purpose and syntax for the specified function.
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The available functions are organized in groups as follows. Each group is described in a
separate chapter.

Groups of functions

General purpose
commands for managing variables, workspace, output etc

Matrix functions for matrix handling

Material functions for computing material matrices

Element functions for computing element matrices and element forces

System functions for setting up and solving systems of equations

Statement
functions for algorithm definitions

Graphics functions for plotting
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2 General purpose functions

The general purpose functions are used for managing variables and workspace, control of
output etc. The functions listed here are a subset of the general purpose functions described
in the MATLAB manual. The functions can be divided into the following groups

Managing commands and functions
help Online documentation
type List .m-file
what Directory listing of .m-, .mat- and .mex-files
... Continuation
% Write a comment line

Managing variables and the workspace
clear Remove variables from workspace
disp Display variables in workspace on display screen
load Retrieve variable from disk and load in workspace
save Save matrix bank variable on disk
who,
whos

List directory of variables in workspace

Working with files and controlling the command window
diary Save session in a named file
echo Control output on the display screen
format Control the output display format
quit Stop execution and exit from the CALFEM program
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clear

Purpose:

Remove variables from workspace.

Syntax:

clear
clear name1 name2 name3 ...

Description:

clear removes all variables from workspace.

clear name1 name2 name3 ... removes specified variables from workspace.

Note:

This is a MATLAB built-in function. For more information about the clear function,
type help clear.
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diary

Purpose:

Save session in a disk file.

Syntax:

diary filename
diary off
diary on

Description:

diary filename writes a copy of all subsequent keyboard input and most of the resulting
output (but not graphs) on the named file. If the file filename already exists, the
output is appended to the end of that file.

diary off stops storage of the output.

diary on turns it back on again, using the current filename or default filename diary
if none has yet been specified.

The diary function may be used to store the current session for later runs. To make
this possible, finish each command line with semicolon ’;’ to avoid the storage of
intermediate results on the named diary file.

Note:

This is a MATLAB built-in function. For more information about the diary function,
type help diary.
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disp

Purpose:

Display a variable in matrix bank on display screen.

Syntax:

disp(A)

Description:

disp(A) displays the matrix A on the display screen.

Note:

This is a MATLAB built-in function. For more information about the disp function,
type help disp.
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echo

Purpose:

Control output on the display screen.

Syntax:

echo on
echo off
echo

Description:

echo on turns on echoing of commands inside Script-files.

echo off turns off echoing.

echo by itself, toggles the echo state.

Note:

This is a MATLAB built-in function. For more information about the echo function,
type help echo.
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format

Purpose:

Control the output display format.

Syntax:

See the listing below.

Description:

format controls the output format. By default, MATLAB displays numbers in a short
format with five decimal digits.

Command Result Example
format short 5 digit scaled fixed point 3.1416
format long 15 digit scaled fixed point 3.14159265358979
format short e 5 digit floating point 3.1416e+00
format long e 16 digit floating point 3.141592653589793e+00

Note:

This is a MATLAB built-in function. For more information about the format func-
tion, type help format.
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help

Purpose:

Display a description of purpose and syntax for a specific function.

Syntax:

help function name

Description:

help provides an online documentation for the specified function.

Example:

Typing

>> help bar1e

yields

Ke=bar1e(ep)

----------------------------------------------------------

PURPOSE

Compute element stiffness matrix

for spring (analog) element.

INPUT: ep = [k]; spring stiffness or analog quantity.

OUTPUT: Ke : stiffness matrix, dim(Ke)= 2 x 2

----------------------------------------------------------

Note:

This is a MATLAB built-in function. For more information about the help function,
type help help.
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load

Purpose:

Retrieve variable from disk and load in workspace.

Syntax:

load filename
load filename.ext

Description:

load filename retrieves the variables from the binary file filename.mat.

load filename.ext reads the ASCII file filename.ext with numeric data arranged in m
rows and n columns. The result is an m-by-n matrix residing in workspace with the
name filename, i.e. with the extension stripped.

Note:

This is a MATLAB built-in function. For more information about the load function,
type help load.
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quit

Purpose:

Terminate CALFEM session.

Syntax:

quit

Description:

quit filename terminates the CALFEM without saving the workspace.

Note:

This is a MATLAB built-in function. For more information about the quit function,
type help quit.
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save

Purpose:

Save workspace variables on disk.

Syntax:

save filename
save filename variables
save filename variables -ascii

Description:

save filename writes all variables residing in workspace in a binary file named file-
name.mat

save filename variables writes named variables, separated by blanks, in a binary file
named filename.mat

save filename variables -ascii writes named variables in an ASCII file named filename.

Note:

This is a MATLAB built-in function. For more information about the save function,
type help save.
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type

Purpose:

List file.

Syntax:

type filename

Description:

type filename lists the specified file. Use path names in the usual way for your
operating system. If a filename extension is not given, .m is added by default. This
makes it convenient to list the contents of .m-files on the screen.

Note:

This is a MATLAB built-in function. For more information about the type function,
type help type.

2 – 11 GENERAL PURPOSE



what

Purpose:

Directory listing of .m-files, .mat-files and .mex-files.

Syntax:

what
what dirname

Description:

what lists the .m-files, .mat-files and .mex-files in the current directory.

what dirname lists the files in directory dirname in the MATLAB search path. The
syntax of the path depends on your operating system.

Note:

This is a MATLAB built-in function. For more information about the what function,
type help what.
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who, whos

Purpose:

List directory of variables in matrix bank.

Syntax:

who
whos

Description:

who lists the variables currently in memory.

whos lists the current variables and their size.

Examples:

who

Your variables are:

A B C
K M X
k lambda

whos

name size elements bytes density complex
A 3-by-3 9 72 Full No
B 3-by-3 9 72 Full No
C 3-by-3 9 72 Full No
K 20-by-20 400 3200 Full No
M 20-by-20 400 3200 Full No
X 20-by-20 400 3200 Full No
k 1-by-1 1 8 Full No

lambda 20-by-1 20 160 Full No

Grand total is 1248 elements using 9984 bytes

Note:

These are MATLAB built-in functions. For more information about the functions,
type help who or help whos.

2 – 13 GENERAL PURPOSE



...

Purpose:

Continuation.

Syntax:

...

Description:

An expression can be continued on the next line by using ... .

Note:

This is a MATLAB built-in function.
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%

Purpose:

Write a comment line.

Syntax:

% arbitrary text

Description:

An arbitrary text can be written after the symbol %.

Note:

This is a MATLAB built-in character.
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3 Matrix functions

The group of matrix functions comprises functions for vector and matrix operations and
also functions for sparse matrix handling. MATLAB has two storage modes, full and sparse.
Only nonzero entries and their indices are stored for sparse matrices. Sparse matrices are
not created automatically. But once initiated, sparsity propagates. Operations on sparse
matrices produce sparse matrices and operations on a mixture of sparse and full matrices
also normally produce sparse matrices.

The following functions are described in this chapter:

Vector and matrix operations
[ ] ( ) = Special characters
’ . , ; Special characters
: Create vectors and do matrix subscripting
+ – ∗ / Matrix arithmetic
abs Absolute value
det Matrix determinant
diag Diagonal matrices and diagonals of a matrix
inv Matrix inverse
length Vector length
max Maximum element(s) of a matrix
min Minimum element(s) of a matrix
ones Generate a matrix of all ones
red Reduce the size of a square matrix
size Matrix dimensions
sqrt Square root
sum Sum of the elements of a matrix
zeros Generate a zero matrix

Sparse matrix handling
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spy Visualize sparsity structure
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[ ] ( ) = ’ . , ;

Purpose:

Special characters.

Syntax:

[ ] ( ) = ’ . , ;

Description:

[ ] Brackets are used to form vectors and matrices.

( ) Parentheses are used to indicate precedence in arithmetic expressions and to
specify an element of a matrix.

= Used in assignment statements.

’ Matrix transpose. X’ is the transpose of X. If X is complex, the apostrophe
sign performs complex conjugate as well. Do X.’ if only the transpose of the
complex matrix is desired

. Decimal point. 314/100, 3.14 and 0.314e1 are all the same.

, Comma. Used to separate matrix subscripts and function arguments.

; Semicolon. Used inside brackets to end rows. Used after an expression to
suppress printing or to separate statements.

Examples:

By the statement

a = 2

the scalar a is assigned a value of 2. An element in a matrix may be assigned a value
according to

A(2, 5) = 3

The statement

D = [ 1 2 ; 3 4]

results in matrix

D =

[
1 2
3 4

]
stored in the matrix bank. To copy the contents of the matrix D to a matrix E, use

E = D

The character ’ is used in the following statement to store the transpose of the matrix
A in a new matrix F

F = A′

Note:

These are MATLAB built-in characters.
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:

Purpose:

Create vectors and do matrix subscripting.

Description:

The colon operator uses the following rules to create regularly spaced vectors:

j : k is the same as [ j, j + 1, ... , k ]

j : i : k is the same as [ j, j + i, j + 2i, ... , k ]

The colon notation may also be used to pick out selected rows, columns, and elements
of vectors and matrices:

A( : , j ) is the j :th column of A

A( i , : ) is the i :th row of A

Examples:

The colon ’:’ used with integers

d = 1 : 4

results in a row vector

d = [ 1 2 3 4 ]

stored in the workspace.

The colon notation may be used to display selected rows and columns of a matrix on
the terminal. For example, if we have created a 3-times-4 matrix D by the statement

D = [ d ; 2 ∗ d ; 3 ∗ d ]

resulting in

D =

 1 2 3 4
2 4 6 8
3 6 9 12


columns three and four are displayed by entering

D( : , 3 : 4 )

resulting in

D( : , 3 : 4 ) =

 3 4
6 8
9 12


In order to copy parts of the D matrix into another matrix the colon notation is used
as

E( 3 : 4 , 2 : 3 ) = D( 1 : 2 , 3 : 4 )
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:

Assuming the matrix E was a zero matrix before the statement is executed, the result
will be

E =


0 0 0 0
0 0 0 0
0 3 4 0
0 6 8 0


Note:

This is a MATLAB built-in character.
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+ − ∗ /

Purpose:

Matrix arithmetic.

Syntax:

A + B
A − B
A ∗ B
A/s

Description:

Matrix operations are defined by the rules of linear algebra.

Examples:

An example of a sequence of matrix-to-matrix operations is

D = A + B− C

A matrix-to-vector multiplication followed by a vector-to-vector subtraction may be
defined by the statement

b = c− A ∗ x

and finally, to scale a matrix by a scalar s we may use

B = A/s

Note:

These are MATLAB built-in operators.

3 – 5 MATRIX



abs

Purpose:

Absolute value.

Syntax:

B=abs(A)

Description:

B=abs(A) computes the absolute values of the elements of matrix A and stores them
in matrix B.

Examples:

Assume the matrix

C =

[
−7 4
−3 −8

]

The statement D=abs(C) results in a matrix

D =

[
7 4
3 8

]

stored in the workspace.

Note:

This is a MATLAB built-in function. For more information about the abs function,
type help abs.

MATRIX 3 – 6



det

Purpose:

Matrix determinant.

Syntax:

a=det(A)

Description:

a=det(A) computes the determinant of the matrix A and stores it in the scalar a.

Note:

This is a MATLAB built-in function. For more information about the det function,
type help det.
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diag

Purpose:

Diagonal matrices and diagonals of a matrix.

Syntax:

M=diag(v)
v=diag(M)

Description:

For a vector v with n components, the statement M=diag(v) results in an n × n
matrix M with the elements of v as the main diagonal.

For a n× n matrix M, the statement v=diag(M) results in a column vector v with n
components formed by the main diagonal in M.

Note:

This is a MATLAB built-in function. For more information about the diag function,
type help diag.
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full

Purpose:

Convert sparse matrices to full storage class.

Syntax:

A=full(S)

Description:

A=full(S) converts the storage of a matrix from sparse to full. If A is already full,
full(A) returns A.

Note:

This is a MATLAB built-in function. For more information about the full function,
type help full.
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inv

Purpose:

Matrix inverse.

Syntax:

B=inv(A)

Description:

B=inv(A) computes the inverse of the square matrix A and stores the result in the
matrix B.

Note:

This is a MATLAB built-in function. For more information about the inv function,
type help inv.
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length

Purpose:

Vector length.

Syntax:

n=length(x)

Description:

n=length(x) returns the dimension of the vector x.

Note:

This is a MATLAB built-in function. For more information about the length function,
type help length.

3 – 11 MATRIX



max

Purpose:

Maximum element(s) of a matrix.

Syntax:

b=max(A)

Description:

For a vector a, the statement b=max(a) assigns the scalar b the maximum element
of the vector a.

For a matrix A, the statement b=max(A) returns a row vector b containing the
maximum elements found in each column vector in A.

The maximum element found in a matrix may thus be determined by
c=max(max(A)).

Examples:

Assume the matrix B is defined as

B =

[
−7 4
−3 −8

]

The statement d=max(B) results in a row vector

d =
[
−3 4

]
The maximum element in the matrix B may be found by e=max(d) which results in
the scalar e = 4.

Note:

This is a MATLAB built-in function. For more information about the max function,
type help max.
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min

Purpose:

Minimum element(s) of a matrix.

Syntax:

b=min(A)

Description:

For a vector a, the statement b=min(a) assigns the scalar b the minimum element of
the vector a.

For a matrix A, the statement b=min(A) returns a row vector b containing the min-
imum elements found in each column vector in A.

The minimum element found in a matrix may thus be determined by c=min(min(A)).

Examples:

Assume the matrix B is defined as

B =

[
−7 4
−3 −8

]

The statement d=min(B) results in a row vector

d =
[
−7 −8

]
The minimum element in the matrix B is then found by e=min(d), which results in
the scalar e = −8.

Note:

This is a MATLAB built-in function. For more information about the min function,
type help min.
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ones

Purpose:

Generate a matrix of all ones.

Syntax:

A=ones(m,n)

Description:

A=ones(m,n) results in an m-times-n matrix A with all ones.

Note:

This is a MATLAB built-in function. For more information about the ones function,
type help ones.
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red

Purpose:

Reduce the size of a square matrix by omitting rows and columns.

Syntax:

B=red(A,b)

Description:

B=red(A,b) reduces the square matrix A to a smaller matrix B by omitting rows and
columns of A. The indices for rows and columns to be omitted are specified by the
column vector b.

Examples:

Assume that the matrix A is defined as

A =


1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16


and b as

b =

[
2
4

]

The statement B=red(A,b) results in the matrix

B =

[
1 3
9 11

]
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size

Purpose:

Matrix dimensions.

Syntax:

d=size(A)
[m,n]=size(A)

Description:

d=size(A) returns a vector with two integer components, d=[m,n], from the matrix
A with dimensions m times n.

[m,n]=size(A) returns the dimensions m and n of the m× n matrix A.

Note:

This is a MATLAB built-in function. For more information about the size function,
type help size.

MATRIX 3 – 16



sparse

Purpose:

Create sparse matrices.

Syntax:

S=sparse(A)
S=sparse(m,n)

Description:

S=sparse(A) converts a full matrix to sparse form by extracting all nonzero matrix
elements. If S is already sparse, sparse(S) returns S.

S=sparse(m,n) generates an m-times-n sparse zero matrix.

Note:

This is a MATLAB built-in function. For more information about the sparse function,
type help sparse.
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spy

Purpose:

Visualize matrix sparsity structure.

Syntax:

spy(S)

Description:

spy(S) plots the sparsity structure of any matrix S. S is usually a sparse matrix, but
the function also accepts full matrices and the nonzero matrix elements are plotted.

Note:

This is a MATLAB built-in function. For more information about the spy function,
type help spy.
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sqrt

Purpose:

Square root.

Syntax:

B=sqrt(A)

Description:

B=sqrt(A) computes the square root of the elements in matrix A and stores the result
in matrix B.

Note:

This is a MATLAB built-in function. For more information about the sqrt function,
type help sqrt.
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sum

Purpose:

Sum of the elements of a matrix.

Syntax:

b=sum(A)

Description:

For a vector a, the statement b=sum(a) results in a scalar a containing the sum of
all elements of a.

For a matrix A, the statement b=sum(A) returns a row vector b containing the sum
of the elements found in each column vector of A.

The sum of all elements of a matrix is determined by c=sum(sum(A)).

Note:

This is a MATLAB built-in function. For more information about the sum function,
type help sum.
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zeros

Purpose:

Generate a zero matrix.

Syntax:

A=zeros(m,n)

Description:

A=zeros(m,n) results in an m-times-n matrix A of zeros.

Note:

This is a MATLAB built-in function. For more information about the zeros function,
type help zeros.
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4 Material functions

The group of material functions comprises functions for constitutive models. The available
models can treat linear elastic and isotropic hardening von Mises material. These material
models are defined by the functions:

Material property functions
hooke Form linear elastic constitutive matrix
mises Compute stresses and plastic strains for isotropic hardening

von Mises material
dmises Form elasto-plastic continuum matrix for isotropic hardening

von Mises material
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hooke

Purpose:

Compute material matrix for a linear elastic and isotropic material.

Syntax:

D = hooke(ptype,E,v)

Description:

hooke computes the material matrix D for a linear elastic and isotropic material.

The variable ptype is used to define the type of analysis.

ptype =


1 plane stress.
2 plane strain.
3 axisymmetry.
4 three dimensional analysis.

The material parameters E and v define the modulus of elasticity E and the Poisson’s
ratio ν, respectively.

For plane stress, ptype=1, D is formed as

D =
E

1− ν2


1 ν 0
ν 1 0

0 0
1− ν

2


For plane strain, ptype=2 and axisymmetry, ptype=3, D is formed as

D =
E

(1 + ν)(1− 2ν)


1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 1
2
(1− 2ν)


For the three dimensional case, ptype=4, D is formed as

D =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
(1− 2ν) 0 0

0 0 0 0 1
2
(1− 2ν) 0

0 0 0 0 0 1
2
(1− 2ν)
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mises

Purpose:

Compute stresses and plastic strains for an elasto-plastic isotropic hardening von
Mises material.

Syntax:

[es,deps,st]=mises(ptype,mp,est,st)

Description:

mises computes updated stresses es, plastic strain increments deps, and states vari-
ables st for an elasto-plastic isotropic hardening von Mises material.

The input variable ptype is used to define the type of analysis, cf. hooke. The vector
mp contains the material constants

mp = [ E ν h ]

where E is the modulus of elasticity, ν is the Poisson’s ratio, and h is the plastic
modulus. The input matrix est contains trial stresses obtained by using the elas-
tic material matrix D in plants or some similar s-function, and the input vector st
contains the state parameters

st = [ yi σy ε
p
eff ]

at the beginning of the step. The scalar yi states whether the material behaviour
is elasto-plastic (yi=1), or elastic (yi=0). The current yield stress is denoted by σy

and the effectiv plastic strain by εpeff .

The output variables es and st contain updated values of es and st obtained by
integration of the constitutive equations over the actual displacement step. The
increments of the plastic strains are stored in the vector deps.

If es and st contain more than one row, then every row will be treated by the com-
mand.

Note:

It is not necessary to check whether the material behaviour is elastic or elasto-plastic,
this test is done by the function. The computation is based on an Euler-Backward
method, i.e. the radial return method.

Only the cases ptype=2, 3 and 4, are implemented.
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dmises

Purpose:

Form the elasto-plastic continuum matrix for an isotropic hardening von Mises ma-
terial.

Syntax:

D=dmises(ptype,mp,es,st)

Description:

dmises forms the elasto-plastic continuum matrix for an isotropic hardening von Mises
material.

The input variable ptype is used to define the type of analysis, cf. hooke. The vector
mp contains the material constants

mp = [ E ν h ]

where E is the modulus of elasticity, ν is the Poisson’s ratio, and h is the plastic
modulus. The matrix es contains current stresses obtained from plants or some
similar s-function, and the vector st contains the current state parameters

st = [ yi σy ε
p
eff ]

where yi=1 if the material behaviour is elasto-plastic, and yi=0 if the material
behaviour is elastic. The current yield stress is denoted by σy, and the current
effective plastic strain by εpeff .

Note:

Only the case ptype=2 is implemented.
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5 Element functions

5.1 Introduction

The group of element functions contains functions for computation of element matrices
and element forces for different element types. The element functions have been divided
into the following groups

Spring element

Bar elements

Heat flow elements

Solid elements

Beam elements

Plate element

For each element type there is a function for computation of the element stiffness matrix
Ke. For most of the elements, an element load vector f e can also be computed. These
functions are identified by their last letter -e.

Using the function assem, the element stiffness matrices and element load vectors are
assembled into a global stiffness matrix K and a load vector f . Unknown nodal values of
temperatures or displacements a are computed by solving the system of equations Ka = f
using the function solveq. A vector of nodal values of temperatures or displacements for a
specific element are formed by the function extract.

When the element nodal values have been computed, the element flux or element stresses
can be calculated using functions specific to the element type concerned. These functions
are identified by their last letter -s.

For some elements, a function for computing the internal force vector is also available.
These functions are identified by their last letter -f.
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5.2 Spring element

The spring element, shown below, can be used for the analysis of one-dimensional spring
systems and for a variety of analogous physical problems.

k
u1 u2

●●

Quantities corresponding to the variables of the spring are listed in Table 1.

Problem type Spring Nodal dis- Element Spring
stiffness placement force force

Spring k u P N

Bar
EA

L
u P N

Thermal conduction
λA

L
T Q̄ Q

Electrical circuit
1

R
U Ī I

Groundwater flow
kA

L
φ Q̄ Q

Pipe network
πD4

128µL
p Q̄ Q

Table 1: Analogous quantities
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Interpretations of the spring element

Problem type Quantities Designations

Spring

k
u2, P2

N N

●●

●●

u1, P1

k
u
P
N

spring stiffness
displacement
element force
spring force

Bar E, A

N N

L

u2, P2u1, P1

L
E
A
u
P
N

length
modulus of elasticity
area of cross section
displacement
element force
normal force

Thermal
conduction λ

Q1
Q

●●

L

Q2T2T1

L
λ
T
Q̄
Q

length
thermal conductivity
temperature
element heat flow
internal heat flow

Electrical
circuit

R
U2U1

I1

I

●●
I2

R
U
Ī
I

resistance
potential
element current
internal current

Ground-
water
flow

● ●

k

Q1 Q Q2

L

φ1 φ2

L
k
φ
Q̄
Q

length
permeability
piezometric head
element water flow
internal water flow

Pipe
network
(laminar
flow)

p1 p2

Q

D, µ

L
Q2Q1

L
D
µ
p
Q̄
Q

length
pipe diameter
viscosity
pressure
element fluid flow
internal fluid flow

Table 2: Quantities used in different types of problems
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The following functions are available for the spring element:

Spring functions
spring1e Compute element matrix
spring1s Compute spring force
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spring1e Spring element

Purpose:

Compute element stiffness matrix for a spring element.

k
u1 u2

●●

Syntax:

Ke=spring1e(ep)

Description:

spring1e provides the element stiffness matrix Ke for a spring element.

The input variable

ep = [ k ]

supplies the spring stiffness k or the analog quantity defined in Table 1.

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke =

[
k −k

−k k

]

where k is defined by ep.
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Spring element spring1s

Purpose:

Compute spring force in a spring element.

N N
●●

Syntax:

es=spring1s(ep,ed)

Description:

spring1s computes the spring force es in a spring element.

The input variable ep is defined in spring1e and the element nodal displacements ed
are obtained by the function extract.

The output variable

es = [ N ]

contains the spring force N , or the analog quantity.

Theory:

The spring force N , or analog quantity, is computed according to

N = k [ u2 − u1 ]
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Spring element spring1s

5.3 Bar elements

Bar elements are available for one, two, and three dimensional analysis. For the one
dimensional element, see the spring element.

Bar elements

u1

u2

u3

u4

bar2e
bar2g

u1

u2

u3

u4

u5

u6

bar3e

Two dimensional bar functions
bar2e Compute element matrix
bar2g Compute element matrix for geometric nonlinear element
bar2s Compute normal force

Three dimensional bar functions
bar3e Compute element matrix
bar3s Compute normal force
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bar2e Two dimensional bar element

Purpose:

Compute element stiffness matrix for a two dimensional bar element.

E, A

x

y

(x2,y2)

(x1,y1)

x

u1

u2

u3

u4

Syntax:

Ke=bar2e(ex,ey,ep)

Description:

bar2e provides the global element stiffness matrix Ke for a two dimensional bar ele-
ment.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E A ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity E,
and the cross section area A.

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄e G

where

K̄e =
EA

L

[
1 −1

−1 1

]
G =

[
nxx̄ nyx̄ 0 0

0 0 nxx̄ nyx̄

]

The transformation matrix G contains the direction cosines

nxx̄ =
x2 − x1

L
nyx̄ =

y2 − y1

L

where the length

L =
√

(x2 − x1)2 + (y2 − y1)2
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Two dimensional bar element bar2g

Purpose:

Compute element stiffness matrix for a two dimensional geometric nonlinear bar.

E, A

x

y

(x2,y2)

(x1,y1)

x
E, A, N

u1

u2

u3

u4

Syntax:

Ke=bar2g(ex,ey,ep,N)

Description:

bar2g provides the element stiffness matrix Ke for a two dimensional geometric non-
linear bar element.

The input variables ex, ey and ep are described in bar2e. The input variable

N = [ N ]

contains the value of the normal force, which is positive in tension.

Theory:

The global element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄e G

where

K̄e =
EA

L


1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

+
N

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



G =


nxx̄ nyx̄ 0 0
nxȳ nyȳ 0 0

0 0 nxx̄ nyx̄

0 0 nxȳ nyȳ
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bar2g Two dimensional bar element

The transformation matrix G contains the direction cosines

nxx̄ = nyȳ =
x2 − x1

L
nyx̄ = −nxȳ =

y2 − y1

L

where the length

L =
√

(x2 − x1)2 + (y2 − y1)2
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Two dimensional bar element bar2s

Purpose:

Compute normal force in a two dimensional bar element.

x

y N

N

Syntax:

es=bar2s(ex,ey,ep,ed)

Description:

bar2s computes the normal force in the two dimensional bar elements bar2e and bar2g.

The input variables ex, ey, and ep are defined in bar2e and the element nodal dis-
placements, stored in ed, are obtained by the function extract.

The output variable

es = [ N ]

contains the normal force N .

Theory:

The normal force N is computed from

N =
EA

L
[ −1 1 ]Gae

where E, A, L, and the transformation matrix G are defined in bar2e. The nodal
displacements in global coordinates

ae = [ u1 u2 u3 u4 ]T

are also shown in bar2e. Note that the transpose of ae is stored in ed.
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bar3e Three dimensional bar element

Purpose:

Compute element stiffness matrix for a three dimensional bar element.

E, A

(x1,y1,z1)

(x2,y2,z2)

z
x

y x

u1

u2

u3

u4

u5

u6

Syntax:

Ke=bar3e(ex,ey,ez,ep)

Description:

bar3e provides the element stiffness matrix Ke for a three dimensional bar element.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]
ez = [ z1 z2 ]

ep = [ E A ]

supply the element nodal coordinates x1, y1, z1, x2 etc, the modulus of elasticity E,
and the cross section area A.

Theory:

The global element stiffness matrix Ke is computed according to

Ke = GT K̄e G

where

K̄e =
EA

L

[
1 −1

−1 1

]
G =

[
nxx̄ nyx̄ nzx̄ 0 0 0
0 0 0 nxx̄ nyx̄ nzx̄

]

The transformation matrix G contains the direction cosines

nxx̄ =
x2 − x1

L
nyx̄ =

y2 − y1

L
nzx̄ =

z2 − z1

L

where the length L =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.
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Three dimensional bar element bar3s

Purpose:

Compute normal force in a three dimensional bar element.

N

N

z
x

y

Syntax:

es=bar3s(ex,ey,ez,ep,ed)

Description:

bar3s computes the normal force in a three dimensional bar element.

The input variables ex, ey, ez, and ep are defined in bar3e, and the element nodal
displacements, stored in ed, are obtained by the function extract.

The output variable

es = [ N ]

contains the normal force N of the bar.

Theory:

The normal force N is computed from

N =
EA

L
[ −1 1 ]Gae

where E, A, L, and the transformation matrix G are defined in bar3e. The nodal
displacements in global coordinates

ae = [ u1 u2 u3 u4 u5 u6 ]T

are also shown in bar3e. Note that the transpose of ae is stored in ed.
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5.4 Heat flow elements

Heat flow elements are available for one, two, and three dimensional analysis. For one
dimensional heat flow the spring element spring1 is used.

A variety of important physical phenomena are described by the same differential equa-
tion as the heat flow problem. The heat flow element is thus applicable in modelling differ-
ent physical applications. Table 3 below shows the relation between the primary variable
a, the constitutive matrix D, and the load vector fl for a chosen set of two dimensional
physical problems.

Problem type a D fl Designation

Heat flow T λx , λy Q T = temperature
λx , λy = thermal
conductivity
Q = heat supply

Groundwater flow φ kx , ky, Q φ = piezometric
head
kx, ky = perme-
abilities
Q = fluid supply

St. Venant torsion φ
1

G zy
,

1

G zx
2Θ φ = stress function

Gzy, Gzx = shear
moduli
Θ = angle of torsion
per unit length

Table 3: Problem dependent parameters
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Heat flow elements

●

●

●

T2

T3

T1

flw2te

●

●

●

●

T4 T3

T1

T2

flw2qe
flw2i4e

●

●

●

●

●

●

●

●

T4

T3

T1

T2

T7

T6T8

T5

flw2i8e

●

●

●
●

●

●

●

●

T4 T3

T1 T2

T7

T6

T8

T5

flw3i8e

2D heat flow functions
flw2te Compute element matrices for a triangular element
flw2ts Compute temperature gradients and flux
flw2qe Compute element matrices for a quadrilateral element
flw2qs Compute temperature gradients and flux
flw2i4e Compute element matrices, 4 node isoparametric element
flw2i4s Compute temperature gradients and flux
flw2i8e Compute element matrices, 8 node isoparametric element
flw2i8s Compute temperature gradients and flux

3D heat flow functions
flw3i8e Compute element matrices, 8 node isoparametric element
flw3i8s Compute temperature gradients and flux
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Two dimensional heat flow elements flw2te

Purpose:

Compute element stiffness matrix for a triangular heat flow element.

T2

T3

T1 ●

(x1,y1)

●

●

(x3,y3)

(x2,y2)

x

y

Syntax:

Ke=flw2te(ex,ey,ep,D)
[Ke,fe]=flw2te(ex,ey,ep,D,eq)

Description:

flw2te provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a triangular heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex
and ey, the element thickness t is supplied by ep and the thermal conductivities (or
corresponding quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 ]
ey = [ y1 y2 y3 ]

ep = [ t ] D =

[
kxx kxy

kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke = (C−1)T
∫

A
B̄

T
D B̄ t dA C−1

fel = (C−1)T
∫

A
N̄

T
Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the triangular element is based on the linear
temperature approximation T (x, y) and is expressed in terms of the nodal variables
T1, T2 and T3 as

T (x, y) = Neae = N̄ C−1ae
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flw2te Two dimensional heat flow elements

where

N̄ = [ 1 x y ] C =

 1 x1 y1

1 x2 y2

1 x3 y3

 ae =

 T1

T2

T3


and hence it follows that

B̄ = ∇N̄ =

[
0 1 0
0 0 1

]
∇ =


∂

∂x
∂

∂y


Evaluation of the integrals for the triangular element yields

Ke = (C−1)T B̄
T

D B̄ C−1 t A

fel =
QAt

3
[ 1 1 1 ]T

where the element area A is determined as

A =
1

2
detC
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Two dimensional heat flow elements flw2ts

Purpose:

Compute heat flux and temperature gradients in a triangular heat flow element.

Syntax:

[es,et]=flw2ts(ex,ey,D,ed)

Description:

flw2ts computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a triangular heat flow element.

The input variables ex, ey and the matrix D are defined in flw2te. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 ]

The output variables

es = qT = [ qx qy ]

et = (∇T )T =

[
∂T

∂x

∂T

∂y

]

contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = B̄ C−1 ae

q = −D∇T

where the matrices D, B̄, and C are described in flw2te. Note that both the tem-
perature gradient and the heat flux are constant in the element.
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flw2qe Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for a quadrilateral heat flow element.

T2

T4

T1

●

(x1,y1)

●

●

(x4,y4)

(x2,y2)

T3
● (x3,y3)

x

y
●

T5

Syntax:

Ke=flw2qe(ex,ey,ep,D)
[Ke,fe]=flw2qe(ex,ey,ep,D,eq)

Description:

flw2qe provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a quadrilateral heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex
and ey, the element thickness t is supplied by ep and the thermal conductivities (or
corresponding quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ t ] D =

[
kxx kxy

kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

In computing the element matrices, a fifth degree of freedom is introduced. The
location of this extra degree of freedom is defined by the mean value of the coordinates
in the corner points. Four sets of element matrices are calculated using flw2te. These
matrices are then assembled and the fifth degree of freedom is eliminated by static
condensation.
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Two dimensional heat flow elements flw2qs

Purpose:

Compute heat flux and temperature gradients in a quadrilateral heat flow element.

Syntax:

[es,et]=flw2qs(ex,ey,ep,D,ed)
[es,et]=flw2qs(ex,ey,ep,D,ed,eq)

Description:

flw2qs computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a quadrilateral heat flow element.

The input variables ex, ey, eq and the matrix D are defined in flw2qe. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 T4 ]

The output variables

es = qT = [ qx qy ]

et = (∇T )T =

[
∂T

∂x

∂T

∂y

]

contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:

By assembling four triangular elements as described in flw2te a system of equations
containing 5 degrees of freedom is obtained. From this system of equations the
unknown temperature at the center of the element is computed. Then according to
the description in flw2ts the temperature gradient and the heat flux in each of the
four triangular elements are produced. Finally the temperature gradient and the
heat flux of the quadrilateral element are computed as area weighted mean values
from the values of the four triangular elements. If heat is supplied to the element,
the element load vector eq is needed for the calculations.
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flw2i4e Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for a 4 node isoparametric heat flow element.

T4

●

●

●

(x4,y4) ●

x

y

T3

T1

(x1,y1)

(x3,y3)

(x2,y2)

T2

Syntax:

Ke=flw2i4e(ex,ey,ep,D)
[Ke,fe]=flw2i4e(ex,ey,ep,D,eq)

Description:

flw2i4e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a 4 node isoparametric heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex and
ey. The element thickness t and the number of Gauss points n

(n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ t n ] D =

[
kxx kxy

kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.
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Two dimensional heat flow elements flw2i4e

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫

A
BeT D Be t dA

fel =
∫

A
NeT Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the isoparametric 4 node element is based on a
temperature approximation T (ξ, η), expressed in a local coordinates system in terms
of the nodal variables T1, T2, T3 and T4 as

T (ξ, η) = Neae

where

Ne = [ N e
1 N e

2 N e
3 N e

4 ] ae = [ T1 T2 T3 T4 ]T

The element shape functions are given by

N e
1 =

1

4
(1− ξ)(1− η) N e

2 =
1

4
(1 + ξ)(1− η)

N e
3 =

1

4
(1 + ξ)(1 + η) N e

4 =
1

4
(1− ξ)(1 + η)

The Be-matrix is given by

Be = ∇Ne =


∂

∂x
∂

∂y

Ne = (JT )−1


∂

∂ξ
∂

∂η

Ne

where J is the Jacobian matrix

J =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η


Evaluation of the integrals is done by Gauss integration.
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flw2i4s Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a 4 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw2i4s(ex,ey,ep,D,ed)

Description:

flw2i4s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a 4 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i4e. The vector ed
contains the nodal temperatures ae of the element and is obtained by extract as

ed = (ae)T = [ T1 T2 T3 T4 ]

The output variables

es = q̄T =


q1
x q1

y

q2
x q2

y
...

...

qn2

x qn2

y



et = (∇̄T )T =



∂T

∂x

1 ∂T

∂y

1

∂T

∂x

2 ∂T

∂y

2

...
...

∂T

∂x

n2

∂T

∂y

n2


eci =


x1 y1

x2 y2
...

...
xn2 yn2



contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2i4e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T

where the matrices D, Be, and ae are described in flw2i4e, and where the integration
points are chosen as evaluation points.
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Two dimensional heat flow elements flw2i8e

Purpose:

Compute element stiffness matrix for an 8 node isoparametric heat flow element.

x

y

●

●

●

●

●

●

●

●

T4

T3

T1

T2

T7

T6T8

T5

Syntax:

Ke=flw2i8e(ex,ey,ep,D)
[Ke,fe]=flw2i8e(ex,ey,ep,D,eq)

Description:

flw2i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex and
ey. The element thickness t and the number of Gauss points n

(n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 . . . x8 ]
ey = [ y1 y2 y3 . . . y8 ]

ep = [ t n ] D =

[
kxx kxy

kyx kyy

]

If the scalar variable eq is given in the function, the vector fe is computed, using

eq = [ Q ]

where Q is the heat supply per unit volume.
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flw2i8e Two dimensional heat flow elements

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫

A
BeT D Be t dA

fel =
∫

A
NeT Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 2D isoparametric 8 node element is based on a
temperature approximation T (ξ, η), expressed in a local coordinates system in terms
of the nodal variables T1 to T8 as

T (ξ, η) = Neae

where

Ne = [ N e
1 N e

2 N e
3 . . . N e

8 ] ae = [ T1 T2 T3 . . . T8 ]T

The element shape functions are given by

N e
1 = −1

4
(1− ξ)(1− η)(1 + ξ + η) N e

5 =
1

2
(1− ξ2)(1− η)

N e
2 = −1

4
(1 + ξ)(1− η)(1− ξ + η) N e

6 =
1

2
(1 + ξ)(1− η2)

N e
3 = −1

4
(1 + ξ)(1 + η)(1− ξ − η) N e

7 =
1

2
(1− ξ2)(1 + η)

N e
4 = −1

4
(1− ξ)(1 + η)(1 + ξ − η) N e

8 =
1

2
(1− ξ)(1− η2)

The Be-matrix is given by

Be = ∇Ne =


∂

∂x
∂

∂y

Ne = (JT )−1


∂

∂ξ
∂

∂η

Ne

where J is the Jacobian matrix

J =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η


Evaluation of the integrals is done by Gauss integration.
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Two dimensional heat flow elements flw2i8s

Purpose:

Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw2i8s(ex,ey,ep,D,ed)

Description:

flw2i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i8e. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 . . . T8 ]

The output variables

es = q̄T =


q1
x q1

y

q2
x q2

y
...

...

qn2

x qn2

y



et = (∇̄T )T =



∂T

∂x

1 ∂T

∂y

1

∂T

∂x

2 ∂T

∂y

2

...
...

∂T

∂x

n2

∂T

∂y

n2


eci =


x1 y1

x2 y2
...

...
xn2 yn2



contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2i8e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T

where the matrices D, Be, and ae are described in flw2i8e, and where the integration
points are chosen as evaluation points.
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flw3i8e Three dimensional heat flow elements

Purpose:

Compute element stiffness matrix for an 8 node isoparametric element.

z
x

y

●

●

●
●

●

●

●

●

T4 T3

T1 T2

T7

T6

T8

T5

Syntax:

Ke=flw3i8e(ex,ey,ez,ep,D)
[Ke,fe]=flw3i8e(ex,ey,ez,ep,D,eq)

Description:

flw3i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y1, z1 x2 etc, are supplied to the function by ex,
ey and ez. The number of Gauss points n

(n× n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 . . . x8 ]
ey = [ y1 y2 y3 . . . y8 ]
ez = [ z1 z2 z3 . . . z8 ]

ep = [ n ] D =

 kxx kxy kxz

kyx kyy kyz

kzx kzy kzz


If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫

V
BeT D Be dV

fel =
∫

V
NeT Q dV
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Three dimensional heat flow elements flw3i8e

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 3D isoparametric 8 node element is based on
a temperature approximation T (ξ, η, ζ), expressed in a local coordinates system in
terms of the nodal variables T1 to T8 as

T (ξ, η, ζ) = Neae

where

Ne = [ N e
1 N e

2 N e
3 . . . N e

8 ] ae = [ T1 T2 T3 . . . T8 ]T

The element shape functions are given by

N e
1 =

1

8
(1− ξ)(1− η)(1− ζ) N e

2 =
1

8
(1 + ξ)(1− η)(1− ζ)

N e
3 =

1

8
(1 + ξ)(1 + η)(1− ζ) N e

4 =
1

8
(1− ξ)(1 + η)(1− ζ)

N e
5 =

1

8
(1− ξ)(1− η)(1 + ζ) N e

6 =
1

8
(1 + ξ)(1− η)(1 + ζ)

N e
7 =

1

8
(1 + ξ)(1 + η)(1 + ζ) N e

8 =
1

8
(1− ξ)(1 + η)(1 + ζ)

The Be-matrix is given by

Be = ∇Ne =



∂

∂x
∂

∂y
∂

∂z


Ne = (JT )−1



∂

∂ξ
∂

∂η
∂

∂ζ


Ne

where J is the Jacobian matrix

J =



∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂y

∂ξ

∂y

∂η

∂y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ


Evaluation of the integrals is done by Gauss integration.
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flw3i8s Three dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw3i8s(ex,ey,ez,ep,D,ed)

Description:

flw3i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ez, ep and the matrix D are defined in flw3i8e. The vector
ed contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 . . . T8 ]

The output variables

es = q̄T =


q1
x q1

y q1
z

q2
x q2

y q2
z

...
...

...

qn3

x qn3

y qn3

z



et = (∇̄T )T =



∂T

∂x

1 ∂T

∂y

1 ∂T

∂z

1

∂T

∂x

2 ∂T

∂y

2 ∂T

∂z

2

...
...

...

∂T

∂x

n3

∂T

∂y

n3

∂T

∂z

n3


eci =


x1 y1 z1

x2 y2 z2
...

...
...

xn3 yn3 zn3



contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw3i8e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T

where the matrices D, Be, and ae are described in flw3i8e, and where the integration
points are chosen as evaluation points.
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5.5 Solid elements

Solid elements are available for two dimensional analysis in plane stress (panels) and plane
strain, and for general three dimensional analysis. In the two dimensional case there are
a triangular three node element, a quadrilateral four node element, two rectangular four
node elements, and quadrilateral isoparametric four and eight node elements. For three
dimensional analysis there is an eight node isoparametric element.

The elements are able to deal with both isotropic and anisotropic materials. The triangular
element and the three isoparametric elements can also be used together with a nonlinear
material model. The material properties are specified by supplying the constitutive matrix
D as an input variable to the element functions. This matrix can be formed by the functions
described in Section 4.
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Solid elements

u1
●

●

●u2

u5

u6

u3

u4

plante

●

●

●

u7

u8

u1

u2

u5

u6

u3

u4●

planqe

●

●

●

●

u7

u8

u1

u2

u5

u6

u3

u4

planre
plantce

u7

u8

u2

u5

u6

u3

u4

u1
●

●

●

●

plani4e

u1

u2

●

●

●

●

●

●

●

●

2

3

4

6

7

8

51

plani8e

●

●

●
●

●

●

●

●

u3

u1

u2

soli8e
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2D solid functions
plante Compute element matrices for a triangular element
plants Compute stresses and strains
plantf Compute internal element forces
planqe Compute element matrices for a quadrilateral element
planqs Compute stresses and strains
planre Compute element matrices for a rectangular Melosh element
planrs Compute stresses and strains
plantce Compute element matrices for a rectangular Turner-Clough element
plantcs Compute stresses and strains
plani4e Compute element matrices, 4 node isoparametric element
plani4s Compute stresses and strains
plani4f Compute internal element forces
plani8e Compute element matrices, 8 node isoparametric element
plani8s Compute stresses and strains
plani8f Compute internal element forces

3D solid functions
soli8e Compute element matrices, 8 node isoparametric element
soli8s Compute stresses and strains
soli8f Compute internal element forces
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plante Two dimensional solid elements

Purpose:

Compute element matrices for a triangular element in plane strain or plane stress.

x

y

(x1,y1)

(x2,y2)

(x3,y3)

u1
●

●

●u2

u5

u6

u3

u4

Syntax:

Ke=plante(ex,ey,ep,D)
[Ke,fe]=plante(ex,ey,ep,D,eq)

Description:

plante provides an element stiffness matrix Ke and an element load vector fe for a
triangular element in plane strain or plane stress.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype and the element thickness t are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 × 3) to (6 × 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex = [ x1 x2 x3 ]
ey = [ y1 y2 y3 ]

ep = [ ptype t ]

D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33

 or D =



D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]

[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]
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Two dimensional solid elements plante

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke = (C−1)T
∫

A
B̄

T
D B̄ t dA C−1

fel = (C−1)T
∫

A
N̄

T
b t dA

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the triangular element is based on a linear dis-
placement approximation u(x, y) and is expressed in terms of the nodal variables u1,
u2, . . . , u6 as

u(x, y) = Ne ae = N̄ C−1 ae

where

u =

[
ux

uy

]
N̄ =

[
1 x y 0 0 0
0 0 0 1 x y

]

C =



1 x1 y1 0 0 0
0 0 0 1 x1 y1

1 x2 y2 0 0 0
0 0 0 1 x2 y2

1 x3 y3 0 0 0
0 0 0 1 x3 y3


ae =



u1

u2

u3

u4

u5

u6


The matrix B̄ is obtained as

B̄ = ∇̃N̄c where ∇̃ =



∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


If a larger D-matrix than (3× 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 × 3) matrix by static condensation using σzz = σxz = σyz = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.
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plante Two dimensional solid elements

If a larger D-matrix than (3× 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 × 3) matrix using εzz = γxz = γyz = 0. This implies that a
(3×3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals for the triangular element yields

Ke = (C−1)T B̄
T

D B̄ C−1 t A

f e
l =

A t

3
[ bx by bx by bx by ]T

where the element area A is determined as

A =
1

2
det

 1 x1 y1

1 x2 y2

1 x3 y3
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Two dimensional solid elements plants

Purpose:

Compute stresses and strains in a triangular element in plane strain or plane stress.

u1
●

●

●u2

u5

u6

u3

u4

σxx

σxy

σyy

σxx

σxy

σyy

x

y

Syntax:

[es,et]=plants(ex,ey,ep,D,ed)

Description:

plants computes the stresses es and the strains et in a triangular element in plane
strain or plane stress.

The input variables ex, ey, ep and D are defined in plante. The vector ed contains
the nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 . . . u6 ]

The output variables

es = σT = [ σxx σyy [σzz] σxy [σxz] [σyz] ]

et = εT = [ εxx εyy [εzz] γxy [γxz] [γyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress εzz 6= 0, and for plane strain σzz 6= 0.

Theory:

The strains and stresses are computed according to

ε = B̄ C−1 ae

σ = D ε

where the matrices D, B̄, C and ae are described in plante. Note that both the
strains and the stresses are constant in the element.
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plantf Two dimensional solid elements

Purpose:

Compute internal element force vector in a triangular element in plane strain or
plane stress.

Syntax:

ef=plantf(ex,ey,ep,es)

Description:

plantf computes the internal element forces ef in a triangular element in plane strain
or plane stress.

The input variables ex, ey and ep are defined in plante, and the input variable es is
defined in plants.

The output variable

ef = fT
i = [ fi1 fi2 . . . fi6 ]

contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

fi =
∫

A
BT σ t dA

where the matrices B and σ are defined in plante and plants, respectively.

Evaluation of the integral for the triangular element yields

fi = B̄ C−1 σ t A
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Two dimensional solid elements planqe

Purpose:

Compute element matrices for a quadrilateral element in plane strain or plane stress.

x

y

2

3

4

(x1,y1)

u7

u8

u2

u5

u6

u3

u4

u1
●

●

●

●

Syntax:

Ke=planqe(ex,ey,ep,D)
[Ke,fe]=planqe(ex,ey,ep,D,eq)

Description:

planqe provides an element stiffness matrix Ke and an element load vector fe for a
quadrilateral element in plane strain or plane stress.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype and the element thickness t are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 × 3) to (6 × 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ ptype t ]

D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33

 or D =



D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]

[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]
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planqe Two dimensional solid elements

If uniformly distributed loads are applied on the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

In computing the element matrices, two more degrees of freedom are introduced.
The location of these two degrees of freedom is defined by the mean value of the
coordinates at the corner points. Four sets of element matrices are calculated using
plante. These matrices are then assembled and the two extra degrees of freedom are
eliminated by static condensation.
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Two dimensional solid elements planqs

Purpose:

Compute stresses and strains in a quadrilateral element in plane strain or plane
stress.

u7
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σyy

σxx

σxy

σyy

x
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Syntax:

[es,et]=planqs(ex,ey,ep,D,ed)
[es,et]=planqs(ex,ey,ep,D,ed,eq)

Description:

planqs computes the stresses es and the strains et in a quadrilateral element in plane
strain or plane stress.

The input variables ex, ey, ep, D and eq are defined in planqe. The vector ed contains
the nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 . . . u8 ]

If body forces are applied to the element the variable eq must be included.

The output variables

es = σT = [ σxx σyy [σzz] σxy [σxz] [σyz] ]

et = εT = [ εxx εyy [εzz] γxy [γxz] [γyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress εzz 6= 0, and for plane strain σzz 6= 0.

Theory:

By assembling triangular elements as described in planqe a system of equations con-
taining 10 degrees of freedom is obtained. From this system of equations the two
unknown displacements at the center of the element are computed. Then according
to the description in plants the strain and stress components in each of the four trian-
gular elements are produced. Finally the quadrilateral element strains and stresses
are computed as area weighted mean values from the values of the four triangular
elements. If uniformly distributed loads are applied on the element, the element load
vector eq is needed for the calculations.
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planre Two dimensional solid elements

Purpose:

Compute element matrices for a rectangular (Melosh) element in plane strain or
plane stress.

x
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Syntax:

Ke=planre(ex,ey,ep,D)
[Ke,fe]=planre(ex,ey,ep,D,eq)

Description:

planre provides an element stiffness matrix Ke and an element load vector fe for a
rectangular (Melosh) element in plane strain or plane stress. This element can only
be used if the element edges are parallel to the coordinate axis.

The element nodal coordinates (x1, y1) and (x3, y3) are supplied to the function by
ex and ey. The type of analysis ptype and the element thickness t are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 × 3) to (6 × 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex = [ x1 x3 ]
ey = [ y1 y3 ]

ep = [ ptype t ]

D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33

 or D =



D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]

[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]
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Two dimensional solid elements planre

If uniformly distributed loads are applied on the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫

A
BeT D Be t dA

fel =
∫

A
NeT b t dA

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the rectangular element is based on a bilinear
displacement approximation u(x, y) and is expressed in terms of the nodal variables
u1, u2, . . ., u8 as

u(x, y) = Ne ae

where

u =

[
ux

uy

]
Ne =

[
N e

1 0 N e
2 0 N e

3 0 N e
4 0

0 N e
1 0 N e

2 0 N e
3 0 N e

4

]
ae =


u1

u2
...
u8


With a local coordinate system located at the center of the element, the element
shape functions N e

1 −N e
4 are obtained as

N e
1 =

1

4ab
(x− x2)(y − y4)

N e
2 = − 1

4ab
(x− x1)(y − y3)

N e
3 =

1

4ab
(x− x4)(y − y2)

N e
4 = − 1

4ab
(x− x3)(y − y1)

where

a =
1

2
(x3 − x1) and b =

1

2
(y3 − y1)
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planre Two dimensional solid elements

The matrix B̄ is obtained as

B = ∇̃N where ∇̃ =



∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


If a larger D-matrix than (3× 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 × 3) matrix by static condensation using σzz = σxz = σyz = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3× 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 × 3) matrix using εzz = γxz = γyz = 0. This implies that a
(3×3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals for the rectangular element can be done either analytically
or numerically by use of a 2× 2 point Gauss integration. The element load vector f e

l

yields

f e
l = abt



bx
by
bx
by
bx
by
bx
by
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Two dimensional solid elements planrs

Purpose:

Compute stresses and strains in a rectangular (Melosh) element in plane strain or
plane stress.
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Syntax:

[es,et]=planrs(ex,ey,ep,D,ed)

Description:

planrs computes the stresses es and the strains et in a rectangular (Melosh) element
in plane strain or plane stress. The stress and strain components are computed at
the center of the element.

The input variables ex, ey, ep and D are defined in planre. The vector ed contains
the nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 . . . u8 ]

The output variables

es = σT = [ σxx σyy [σzz] σxy [σxz] [σyz] ]

et = εT = [ εxx εyy [εzz] γxy [γxz] [γyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress εzz 6= 0, and for plane strain σzz 6= 0.

Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in planre, and where the evaluation
point (x, y) is chosen to be at the center of the element.
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plantce Two dimensional solid elements

Purpose:

Compute element matrices for a rectangular (Turner-Clough) element in plane strain
or plane stress.

x

y

(x1,y1)

(x4,y4)

(x2,y2)

(x3,y3)
●

●

●

●

u7

u8

u1

u2

u5

u6

u3

u4

Syntax:

Ke=plantce(ex,ey,ep)
[Ke,fe]=plantce(ex,ey,ep,eq)

Description:

plantce provides an element stiffness matrix Ke and an element load vector fe for a
rectangular (Turner-Clough) element in plane strain or plane stress. This element
can only be used if the material is isotropic and if the element edges are parallel to
the coordinate axis.

The element nodal coordinates (x1, y1) and (x3, y3) are supplied to the function by ex
and ey. The state of stress ptype, the element thickness t and the material properties
E and ν are supplied by ep. For plane stress ptype = 1 and for plane strain ptype = 2.

ex = [ x1 x3 ]
ey = [ y1 y3 ]

ep = [ ptype t E ν ]

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.
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Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫

A
BeT D Be t dA

fel =
∫

A
NeT b t dA

where the constitutive matrix D is described in hooke, see Section 4, and the body
force vector b is defined by eq.

The evaluation of the integrals for the Turner-Clough element is based on a dis-
placement field u(x, y) built up of a bilinear displacement approximation superposed
by bubble functions in order to create a linear stress field over the element. The
displacement field is expressed in terms of the nodal variables u1, u2, . . ., u8 as

u(x, y) = Ne ae

where

u =

[
ux

uy

]
Ne =

[
N e

1 N e
5 N e

2 N e
5 N e

3 N e
5 N e

4 N e
5

N e
6 N e

1 N e
6 N e

2 N e
6 N e

3 N e
6 N e

4

]
ae =


u1

u2
...
u8


With a local coordinate system located at the center of the element, the element
shape functions N e

1 −N e
6 are obtained as

N e
1 =

1

4ab
(a− x)(b− y)

N e
2 =

1

4ab
(a+ x)(b− y)

N e
3 =

1

4ab
(a+ x)(b+ y)

N e
4 =

1

4ab
(a− x)(b+ y)

N e
5 =

1

8ab

[
(b2 − y2) + ν(a2 − x2)

]
N e

6 =
1

8ab

[
(a2 − x2) + ν(b2 − y2)

]
where

a =
1

2
(x3 − x1) and b =

1

2
(y3 − y1)
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The matrix B̄ is obtained as

B = ∇̃N where ∇̃ =



∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


Evaluation of the integrals for the Turner-Clough element can be done either ana-
lytically or numerically by use of a 2× 2 point Gauss integration. The element load
vector f e

l yields

f e
l = abt



bx
by
bx
by
bx
by
bx
by
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Purpose:

Compute stresses and strains in a Turner-Clough element in plane strain or plane
stress.

●

●

●

●

u7

u8

u1

u2

u5

u6

u3

u4
σxx

σxy

σyy

σxx

σxy

σyy

x

y

Syntax:

[es,et]=plantcs(ex,ey,ep,ed)

Description:

plantcs computes the stresses es and the strains et in a rectangular Turner-Clough ele-
ment in plane strain or plane stress. The stress and strain components are computed
at the center of the element.

The input variables ex, ey, and ep are defined in plantce. The vector ed contains the
nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 . . . u8 ]

The output variables

es = σT = [ σxx σyy [σzz] σxy [σxz] [σyz] ]

et = εT = [ εxx εyy [εzz] γxy [γxz] [γyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress εzz 6= 0, and for plane strain σzz 6= 0.

Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in plantce, and where the evaluation
point (x, y) is chosen to be at the center of the element.
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Purpose:

Compute element matrices for a 4 node isoparametric element in plane strain or
plane stress.

x

y

2

3

4

(x1,y1)

u7

u8

u2

u5

u6

u3

u4

u1
●

●

●

●

Syntax:

Ke=plani4e(ex,ey,ep,D)
[Ke,fe]=plani4e(ex,ey,ep,D,eq)

Description:

plani4e provides an element stiffness matrix Ke and an element load vector fe for a 4
node isoparametric element in plane strain or plane stress.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype, the element thickness t, and the number of Gauss
points n are supplied by ep.

ptype = 1 plane stress (n× n) integration points
ptype = 2 plane strain n = 1, 2, 3

The material properties are supplied by the constitutive matrix D. Any arbitrary D-
matrix with dimensions from (3× 3) to (6× 6) maybe given. For an isotropic elastic
material the constitutive matrix can be formed by the function hooke, see Section 4.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ ptype t n ]

D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33

 or D =



D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]

[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]


If different Di -matrices are used in the Gauss points these Di -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in plani4s.

D =


D1

D2
...

Dn2
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If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]
containing loads per unit volume, bx and by, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫

A
BeT D Be t dA

fel =
∫

A
NeT b t dA

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 4 node element is based on a
displacement approximation u(ξ, η), expressed in a local coordinates system in terms
of the nodal variables u1, u2, . . ., u8 as

u(ξ, η) = Ne ae

where

u =

[
ux

uy

]
Ne =

[
N e

1 0 N e
2 0 N e

3 0 N e
4 0

0 N e
1 0 N e

2 0 N e
3 0 N e

4

]
ae =


u1

u2
...
u8


The element shape functions are given by

N e
1 =

1

4
(1− ξ)(1− η) N e

2 =
1

4
(1 + ξ)(1− η)

N e
3 =

1

4
(1 + ξ)(1 + η) N e

4 =
1

4
(1− ξ)(1 + η)

The matrix B̄ is obtained as

B = ∇̃N where ∇̃ =



∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x


and where

∂

∂x
∂

∂y

 = (JT )−1


∂

∂ξ
∂

∂η

 J =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η
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If a larger D-matrix than (3× 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 × 3) matrix by static condensation using σzz = σxz = σyz = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3× 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 × 3) matrix using εzz = γxz = γyz = 0. This implies that a
(3×3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals is done by Gauss integration.
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Purpose:

Compute stresses and strains in a 4 node isoparametric element in plane strain or
plane stress.

u7

u8

u2

u5

u6

u3

u4

u1
●

●

●

●

σxx

σxy

σyy

σxx

σxy

σyy

x

y

Syntax:

[es,et,eci]=plani4s(ex,ey,ep,D,ed)

Description:

plani4s computes stresses es and the strains et in a 4 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey, ep and the matrix D are defined in plani4e. The vector ed
contains the nodal displacements ae of the element and is obtained by the function
extract as

ed = (ae)T = [ u1 u2 . . . u8 ]

The output variables

es = σT =



σ1
xx σ1

yy [σ1
zz] σ1

xy [σ1
xz]

[
σ1

yz

]
σ2

xx σ2
yy [σ2

zz] σ2
xy [σ2

xz]
[
σ2

yz

]
...

...
...

...
...

...

σn2

xx σn2

yy

[
σn2

zz

]
σn2

xy

[
σn2

xz

] [
σn2

yz

]



et = εT =



ε1
xx ε1

yy [ε1
zz] γ1

xy [γ1
xz]

[
γ1

yz

]
ε2

xx ε2
yy [ε2

zz] γ2
xy [γ2

xz]
[
γ2

yz

]
...

...
...

...
...

...

εn2

xx εn2

yy

[
εn2

zz

]
γn2

xy

[
γn2

xz

] [
γn2

yz

]

 eci =


x1 y1

x2 y2
...

...
xn2 yn2



contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. plani4e. The number of columns in es and et follows the size of D. Note
that for plane stress εzz 6= 0, and for plane strain σzz 6= 0.
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Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in plani4e, and where the integration
points are chosen as evaluation points.
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Purpose:

Compute internal element force vector in a 4 node isoparametric element in plane
strain or plane stress.

Syntax:

ef=plani4f(ex,ey,ep,es)

Description:

plani4f computes the internal element forces ef in a 4 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey and ep are defined in plani4e, and the input variable es is
defined in plani4s.

The output variable

ef = fT
i = [ fi1 fi2 . . . fi8 ]

contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

fi =
∫

A
BT σ t dA

where the matrices B and σ are defined in plani4e and plani4s, respectively.

Evaluation of the integral is done by Gauss integration.
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plani8e Two dimensional solid elements

Purpose:

Compute element matrices for an 8 node isoparametric element in plane strain or
plane stress.

x

y

(x1,y1) u1

u2

●

●

●

●

●

●

●

●

2

3

4

6

7

8
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Syntax:

Ke=plani8e(ex,ey,ep,D)
[Ke,fe]=plani8e(ex,ey,ep,D,eq)

Description:

plani8e provides an element stiffness matrix Ke and an element load vector fe for an
8 node isoparametric element in plane strain or plane stress.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype, the element thickness t, and the number of Gauss
points n are supplied by ep.

ptype = 1 plane stress (n× n) integration points
ptype = 2 plane strain n = 1, 2, 3

The material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 × 3) to (6 × 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex = [ x1 x2 . . . x8 ]
ey = [ y1 y2 . . . y8 ]

ep = [ ptype t n ]

D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33

 or D =



D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]

[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]


If different Di -matrices are used in the Gauss points these Di -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in plani8s.

D =


D1

D2
...

Dn2
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If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫

A
BeT D Be t dA

fel =
∫

A
NeT b t dA

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 8 node element is based on a
displacement approximation u(ξ, η), expressed in a local coordinates system in terms
of the nodal variables u1, u2, . . ., u16 as

u(ξ, η) = Ne ae

where

u =

[
ux

uy

]
Ne =

[
N e

1 0 N e
2 0 . . . N e

8 0
0 N e

1 0 N e
2 . . . 0 N e

8

]
ae =


u1

u2
...
u16


The element shape functions are given by

N e
1 = −1

4
(1− ξ)(1− η)(1 + ξ + η) N e

5 =
1

2
(1− ξ2)(1− η)

N e
2 = −1

4
(1 + ξ)(1− η)(1− ξ + η) N e

6 =
1

2
(1 + ξ)(1− η2)

N e
3 = −1

4
(1 + ξ)(1 + η)(1− ξ − η) N e

7 =
1

2
(1− ξ2)(1 + η)

N e
4 = −1

4
(1− ξ)(1 + η)(1 + ξ − η) N e

8 =
1

2
(1− ξ)(1− η2)

The matrix B̄ is obtained as

B = ∇̃N where ∇̃ =



∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x
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and where
∂

∂x
∂

∂y

 = (JT )−1


∂

∂ξ
∂

∂η

 J =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η


If a larger D-matrix than (3× 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 × 3) matrix by static condensation using σzz = σxz = σyz = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3× 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 × 3) matrix using εzz = γxz = γyz = 0. This implies that a
(3×3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals is done by Gauss integration.
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Purpose:

Compute stresses and strains in an 8 node isoparametric element in plane strain or
plane stress.

u1

u2

●

●

●

●

●

●

●

●

2

3

4
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σxx

σxy

σyy

σxx

σxy
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Syntax:

[es,et,eci]=plani8s(ex,ey,ep,D,ed)

Description:

plani8s computes stresses es and the strains et in an 8 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey, ep and the matrix D are defined in plani8e. The vector ed
contains the nodal displacements ae of the element and is obtained by the function
extract as

ed = (ae)T = [ u1 u2 . . . u16 ]

The output variables

es = σT =



σ1
xx σ1

yy [σ1
zz] σ1

xy [σ1
xz]

[
σ1

yz

]
σ2

xx σ2
yy [σ2

zz] σ2
xy [σ2

xz]
[
σ2

yz

]
...

...
...

...
...

...

σn2

xx σn2

yy

[
σn2

zz

]
σn2

xy

[
σn2

xz

] [
σn2

yz

]



et = εT =



ε1
xx ε1

yy [ε1
zz] γ1

xy [γ1
xz]

[
γ1

yz

]
ε2

xx ε2
yy [ε2

zz] γ2
xy [γ2

xz]
[
γ2

yz

]
...

...
...

...
...

...

εn2

xx εn2

yy

[
εn2

zz

]
γn2

xy

[
γn2

xz

] [
γn2

yz

]

 eci =


x1 y1

x2 y2
...

...
xn2 yn2



contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. plani8e. The number of columns in es and et follows the size of D. Note
that for plane stress εzz 6= 0, and for plane strain σzz 6= 0.

5.5 – 29 ELEMENT



plani8s Two dimensional solid elements

Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in plani8e, and where the integration
points are chosen as evaluation points.
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Purpose:

Compute internal element force vector in an 8 node isoparametric element in plane
strain or plane stress.

Syntax:

ef=plani8f(ex,ey,ep,es)

Description:

plani8f computes the internal element forces ef in an 8 node isoparametric element
in plane strain or plane stress.

The input variables ex, ey and ep are defined in plani8e, and the input variable es is
defined in plani8s.

The output variable

ef = fT
i = [ fi1 fi2 . . . fi16 ]

contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

fi =
∫

A
BT σ t dA

where the matrices B and σ are defined in plani8e and plani8s, respectively.

Evaluation of the integral is done by Gauss integration.
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Purpose:

Compute element matrices for an 8 node isoparametric solid element.

z
x

y
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8

5

(x1,y1,z1) ●
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●

u3

u1
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Syntax:

Ke=soli8e(ex,ey,ez,ep,D)
[Ke,fe]=soli8e(ex,ey,ez,ep,D,eq)

Description:

soli8e provides an element stiffness matrix Ke and an element load vector fe for an 8
node isoparametric solid element.

The element nodal coordinates x1, y1, z1, x2 etc. are supplied to the function by ex,
ey and ez, and the number of Gauss points n are supplied by ep.

(n× n) integration points, n = 1, 2, 3

The material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions (6×6) may be given. For an isotropic elastic material the
constitutive matrix can be formed by the function hooke, see Section 4.

ex = [ x1 x2 . . . x8 ]
ey = [ y1 y2 . . . y8 ]
ez = [ z1 z2 . . . z8 ]

ep = [ n ] D =


D11 D12 · · · D16

D21 D22 · · · D26
...

...
. . .

...
D61 D62 · · · D66


If different Di -matrices are used in the Gauss points these Di -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in soli8s.

D =


D1

D2
...

Dn3


If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

 bx
by
bz
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containing loads per unit volume, bx , by, and bz, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫

V
BeT D Be dV

fel =
∫

V
NeT b dV

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 8 node solid element is based
on a displacement approximation u(ξ, η, ζ), expressed in a local coordinates system
in terms of the nodal variables u1, u2, . . ., u24 as

u(ξ, η, ζ) = Ne ae

where

u =

 ux

uy

uz

 Ne =

 N e
1 0 0 N e

2 0 0 . . . N e
8 0 0

0 N e
1 0 0 N e

2 0 . . . 0 N e
8 0

0 0 N e
1 0 0 N e

2 . . . 0 0 N e
8

 ae =


u1

u2
...

u24



The element shape functions are given by

N e
1 =

1

8
(1− ξ)(1− η)(1− ζ) N e

5 =
1

8
(1− ξ)(1− η)(1 + ζ)

N e
2 =

1

8
(1 + ξ)(1− η)(1− ζ) N e

6 =
1

8
(1 + ξ)(1− η)(1 + ζ)

N e
3 =

1

8
(1 + ξ)(1 + η)(1− ζ) N e

7 =
1

8
(1 + ξ)(1 + η)(1 + ζ)

N e
4 =

1

8
(1− ξ)(1 + η)(1− ζ) N e

8 =
1

8
(1− ξ)(1 + η)(1 + ζ)

The Be-matrix is obtained as

Be = ∇̃Ne
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where

∇̃ =



∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂x

0
∂

∂z

∂

∂y





∂

∂x
∂

∂y
∂

∂z


= (JT )−1



∂

∂ξ
∂

∂η
∂

∂ζ



J =



∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂y

∂ξ

∂y

∂η

∂y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ


Evaluation of the integrals is done by Gauss integration.
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Purpose:

Compute stresses and strains in an 8 node isoparametric solid element.

σzz
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z
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y
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●
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Syntax:

[es,et,eci]=soli8s(ex,ey,ez,ep,D,ed)

Description:

soli8s computes stresses es and the strains et in an 8 node isoparametric solid element.

The input variables ex, ey, ez, ep and the matrix D are defined in soli8e. The vector
ed contains the nodal displacements ae of the element and is obtained by the function
extract as

ed = (ae)T = [ u1 u2 . . . u24 ]

The output variables

es = σT =


σ1

xx σ1
yy σ1

zz σ1
xy σ1

xz σ1
yz

σ2
xx σ2

yy σ2
zz σ2

xy σ2
xz σ2

yz
...

...
...

...
...

...

σn3

xx σn3

yy σn3

zz σn3

xy σn3

xz σn3

yz



et = εT =


ε1

xx ε1
yy ε1

zz γ1
xy γ1

xz γ1
yz

ε2
xx ε2

yy ε2
zz γ2

xy γ2
xz γ2

yz
...

...
...

...
...

...

εn3

xx εn3

yy εn3

zz γn3

xy γn3

xz γn3

yz

 eci =


x1 y1 z1

x2 y2 z2
...

...
...

xn3 yn3 zn3


contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. soli8e.
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soli8s Three dimensional solid elements

Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in soli8e, and where the integration
points are chosen as evaluation points.
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Three dimensional solid elements soli8f

Purpose:

Compute internal element force vector in an 8 node isoparametric solid element.

Syntax:

ef=soli8f(ex,ey,ez,ep,es)

Description:

soli8f computes the internal element forces ef in an 8 node isoparametric solid element.

The input variables ex, ey, ez and ep are defined in soli8e, and the input variable es
is defined in soli8s.

The output variable

ef = fT
i = [ fi1 fi2 . . . fi24 ]

contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

fi =
∫

V
BT σ dV

where the matrices B and σ are defined in soli8e and soli8s, respectively.

Evaluation of the integral is done by Gauss integration.
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5.6 Beam elements

Beam elements are available for two, and three dimensional linear static analysis. Two
dimensional beam elements for nonlinear geometric and dynamic analysis are also available.

Beam elements

u1

u2

u4

u5

u6

u3

beam2e
beam2t
beam2w
beam2g
beam2d

u1

u2

u4

u5

u6

u3

u7

u8

u10

u11

u12

u9

beam3e

2D beam elements
beam2e Compute element matrices
beam2s Compute section forces
beam2t Compute element matrices for Timoshenko beam element
beam2ts Compute section forces for Timoshenko beam element
beam2w Compute element matrices for beam element on elastic foundation
beam2ws Compute section forces for beam element on elastic foundation
beam2g Compute element matrices with respect to geometric nonlinearity
beam2gs Compute section forces for geometric nonlinear beam element
beam2d Compute element matrices, dynamic analysis
beam2ds Compute section forces, dynamic analysis

3D beam elements
beam3e Compute element matrices
beam3s Compute section forces
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beam2e Two dimensional beam element

Purpose:

Compute element stiffness matrix for a two dimensional beam element.

E, A, I

x

y

(x1,y1)

(x2,y2)

x

u1

u2

u4

u5

u6

u3

Syntax:

Ke=beam2e(ex,ey,ep)
[Ke,fe]=beam2e(ex,ey,ep,eq)

Description:

beam2e provides the global element stiffness matrix Ke for a two dimensional beam
element.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E A I ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity E,
the cross section area A, and the moment of inertia I.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

eq =
[
qx̄ qȳ

]
then contains the distributed loads per unit length, qx̄ and qȳ.
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Two dimensional beam element beam2e

x

y

1

2

qy

qx

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄eG

where

K̄e =



EA
L

0 0 −EA
L

0 0

0 12EI
L3

6EI
L2 0 −12EI

L3
6EI
L2

0 6EI
L2

4EI
L

0 −6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3 −6EI

L2 0 12EI
L3 −6EI

L2

0 6EI
L2

2EI
L

0 −6EI
L2

4EI
L



G =



nxx̄ nyx̄ 0 0 0 0
nxȳ nyȳ 0 0 0 0
0 0 1 0 0 0
0 0 0 nxx̄ nyx̄ 0
0 0 0 nxȳ nyȳ 0
0 0 0 0 0 1


The transformation matrix G contains the direction cosines

nxx̄ = nyȳ =
x2 − x1

L
nyx̄ = −nxȳ =

y2 − y1

L

where the length

L =
√

(x2 − x1)2 + (y2 − y1)2

The element load vector f e
l , stored in fe, is computed according to

f e
l = GT f̄ e

l
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beam2e Two dimensional beam element

where

f̄ e
l =



qx̄L

2
qȳL

2
qȳL

2

12
qx̄L

2
qȳL

2

−qȳL
2

12
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Two dimensional beam element beam2s

Purpose:

Compute section forces in a two dimensional beam element.

N1

M1

x

y

V1

Nn
Mn

Vn

N
M

V

N

M

V

Syntax:

es=beam2s(ex,ey,ep,ed)
es=beam2s(ex,ey,ep,ed,eq)
[es,edi,eci]=beam2s(ex,ey,ep,ed,eq,n)

Description:

beam2s computes the section forces and displacements in local directions along the
beam element beam2e.

The input variables ex, ey, ep and eq are defined in beam2e, and the element displace-
ments, stored in ed, are obtained by the function extract. If distributed loads are
applied to the element, the variable eq must be included. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the beam are evaluated.

The output variables

es = [ N V M ] edi = [ ū v̄ ] eci = [ x̄ ]

consist of column matrices that contain the section forces, the displacements, and
the evaluation points on the local x-axis. The explicit matrix expressions are

es =


N1 V1 M1

N2 V2 M2
...

...
...

Nn Vn Mn

 edi =


ū1 v̄1

ū2 v̄2
...

...
ūn v̄n

 eci =



0
x̄2
...

x̄n−1

L


where L is the length of the beam element.

Theory:
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beam2s Two dimensional beam element

The evaluation of the section forces is based on the solutions of the basic equations

EA
d2ū

dx̄2
+ qx̄ = 0 EI

d4v̄

dx̄4
− qȳ = 0

From these equations, the displacements along the beam element are obtained as the
sum of the homogeneous and the particular solutions

u =

[
ū(x̄)
v̄(x̄)

]
= uh + up

where

uh = N̄ C−1 G ae up =

[
ūp(x̄)
v̄p(x̄)

]
=


qx̄Lx̄

2EA
(1− x̄

L
)

qȳL
2x̄2

24EI
(1− x̄

L
)2


and

N̄ =

[
1 x̄ 0 0 0 0
0 0 1 x̄ x̄2 x̄3

]
C =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
1 L 0 0 0 0
0 0 1 L L2 L3

0 0 0 1 2L 3L2


ae =


u1

u2
...
u6



The transformation matrix Ge and nodal displacements ae are described in beam2e.
Note that the transpose of ae is stored in ed.

Finally the section forces are obtained from

N = EA
dū

dx̄
V = −EI d

3v̄

dx̄3
M = EI

d2v̄

dx̄2

Examples:

Section forces or element displacements can easily be plotted. The bending moment
M along the beam is plotted by

>> plot(eci,es(:,3))
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Two dimensional Timoshenko beam element beam2t

Purpose:

Compute element stiffness matrix for a two dimensional Timoshenko beam element.

E, A, I

x

y

(x1,y1)

(x2,y2)

x E, G, A, I, ks

u1

u2

u4

u5

u6

u3

Syntax:

Ke=beam2t(ex,ey,ep)
[Ke,fe]=beam2t(ex,ey,ep,eq)

Description:

beam2t provides the global element stiffness matrix Ke for a two dimensional Timo-
shenko beam element.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E G A I ks ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity
E, the shear modulus G, the cross section area A, the moment of inertia I and the
shear correction factor ks.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

eq =
[
qx̄ qȳ

]
then contains the distributed loads per unit length, qx̄ and qȳ.
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beam2t Two dimensional Timoshenko beam element

x

y

1

2

qy

qx

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄eG

where G is described in beam2e, and K̄e is given by

K̄e =



EA
L

0 0 −EA
L

0 0

0 12EI
L3(1+µ)

6EI
L2(1+µ)

0 − 12EI
L3(1+µ)

6EI
L2(1+µ)

0 6EI
L2(1+µ)

4EI(1+ µ
4
)

L(1+µ)
0 − 6EI

L2(1+µ)

2EI(1−µ
2
)

L(1+µ)

−EA
L

0 0 EA
L

0 0

0 − 12EI
L3(1+µ)

− 6EI
L2(1+µ)

0 12EI
L3(1+µ)

− 6EI
L2(1+µ)

0 6EI
L2(1+µ)

2EI(1−µ
2
)

L(1+µ)
0 − 6EI

L2(1+µ)

4EI(1+µ
4
)

L(1+µ)


with

µ =
12EI

L2GAks
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Two dimensional Timoshenko beam element beam2ts

Purpose:

Compute section forces in a two dimensional Timoshenko beam element.

N1

M1

x

y

V1

Nn
Mn

Vn

N
M

V

N

M

V

Syntax:

es=beam2ts(ex,ey,ep,ed)
es=beam2ts(ex,ey,ep,ed,eq)
[es,edi,eci]=beam2ts(ex,ey,ep,ed,eq,n)

Description:

beam2ts computes the section forces and displacements in local directions along the
beam element beam2t.

The input variables ex, ey, ep and eq are defined in beam2t. The element displace-
ments, stored in ed, are obtained by the function extract. If distributed loads are
applied to the element, the variable eq must be included. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the beam are evaluated.

The output variables

es = [ N V M ] edi = [ ū v̄ ] eci = [x̄]

consist of column matrices that contain the section forces, the displacements and
rotation of the cross section (note that the rotation θ is not equal to dv̄

dx̄
), and the

evaluation points on the local x-axis. The explicit matrix expressions are

es =


N1 V1 M1

N2 V2 M2
...

...
...

Nn Vn Mn

 edi =


ū1 v̄1 θ1

ū2 v̄2 θ2
...

...
...

ūn v̄n θn

 eci =



0
x̄2
...

x̄n−1

L


where L is the length of the beam element.

Theory:
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beam2ts Two dimensional Timoshenko beam element

The evaluation of the section forces is based on the solutions of the basic equations

EA
d2ū

dx̄2
+ qx̄ = 0 EI

d3θ

dx̄3
− qȳ = 0 EI

d4v̄

dx̄4
− qȳ = 0

(The equations are valid if qȳ is not more than a linear function of x̄). From these
equations, the displacements along the beam element are obtained as the sum of the
homogeneous and the particular solutions

u =

 ū(x̄)
v̄(x̄)
θ(x̄)

 = uh + up

where

uh = N̄ C−1 G ae up =

 ūp(x̄)
v̄p(x̄)
θp(x̄)

 =



qx̄Lx̄

2EA
(1− x̄

L
)

qȳL
2x̄2

24EI
(1− x̄

L
)2 +

qȳLx̄

2GAks

(1− x̄

L
)

qȳL
2x̄

12EI
(1− 2x̄

L
)(1− x̄

L
)


and

N̄ =

 1 x̄ 0 0 0 0
0 0 1 x̄ x̄2 x̄3

0 0 0 1 2x 3(x2 + 2α)

 α =
EI

GAks

C =



1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 6α
1 L 0 0 0 0
0 0 1 L L2 L3

0 0 0 1 2L 3(L2 + 2α)


ae =


u1

u2
...
u6



The transformation matrix G and nodal displacements ae are described in beam2e.
Note that the transpose of ae is stored in ed.

Finally the section forces are obtained from

N = EA
dū

dx̄
V = GAks(

dv̄

dx̄
− θ) M = EI

dθ

dx̄
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Two dimensional beam element beam2w

Purpose:

Compute element stiffness matrix for a two dimensional beam element on elastic
foundation.

x

y

ka
kt

Syntax:

Ke=beam2w(ex,ey,ep)
[Ke,fe]=beam2w(ex,ey,ep,eq)

Description:

beam2w provides the global element stiffness matrix Ke for a two dimensional beam
element on elastic foundation.

The input variables ex and ey are described in beam2e, and

ep = [ E A I ka kt ]

contains the modulus of elasticity E, the cross section areaA, the moment of inertia I,
the spring stiffness in the axial direction ka, and the spring stiffness in the transverse
direction kt.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable eq, described in beam2e, contains
the distributed loads.
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beam2w Two dimensional beam element

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT (K̄e + K̄e
s)G

where G and K̄e are described in beam2e.

The matrix K̄e
s is given by

K̄e
s =

L

420



140ka 0 0 70ka 0 0
0 156kt 22ktL 0 54kt −13ktL
0 22ktL 4ktL

2 0 13ktL −3ktL
2

70ka 0 0 140ka 0 0
0 54kt 13ktL 0 156kt −22ktL
0 −13ktL −3ktL

2 0 −22ktL 4ktL
2


where the length

L =
√

(x2 − x1)2 + (y2 − y1)2

ELEMENT 5.6 – 12



Two dimensional beam element beam2ws

Purpose:

Compute section forces in a two dimensional beam element on elastic foundation.

N1

M1

x

y

V1

N2
M2

V2

Syntax:

es=beam2ws(ex,ey,ep,ed)
es=beam2ws(ex,ey,ep,ed,eq)

Description:

beam2ws computes the section forces at the ends of the beam element on elastic
foundation beam2w.

The input variables ex, ey, ep and eq are defined in beam2w, and the element dis-
placements, stored in ed, are obtained by the function extract. If distributed loads
are applied to the element the variable eq must be included.

The output variable

es =

[
N1 V1 M1

N2 V2 M2

]

contains the section forces at the ends of the beam.
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beam2ws Two dimensional beam element

Theory:

The section forces at the ends of the beam are obtained from the element force vector

P̄ = [ −N1 − V1 −M1 N2 V2 M2 ]T

computed according to

P̄ = (K̄e + K̄e
s) G ae − f̄l

The matrices K̄e and G, are described in beam2e, and the matrix K̄e
s is described in

beam2w. The nodal displacements

ae = [ u1 u2 u3 u4 u5 u6 ]T

are shown in beam2e. Note that the transpose of ae is stored in ed.
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Two dimensional beam element beam2g

Purpose:

Compute element stiffness matrix for a two dimensional nonlinear beam element.

u1

u2

u4

u5

E, A, I, N

x

y

u6

u3

(x1,y1)

(x2,y2)

x

Syntax:

Ke=beam2g(ex,ey,ep,N)
[Ke,fe]=beam2g(ex,ey,ep,N,eq)

Description:

beam2g provides the global element stiffness matrix Ke for a two dimensional beam
element with respect to geometrical nonlinearity.

The input variables ex, ey, and ep are described in beam2e, and

N = [ N ]

contains the value of the predefined normal force N , which is positive in tension.

The element load vector fe can also be computed if a uniformly distributed transverse
load is applied to the element. The optional input variable

eq = [ qȳ ]

then contains the distributed transverse load per unit length, qȳ. Note that eq is a
scalar and not a vector as in beam2e
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beam2g Two dimensional beam element

Theory:

The element stiffness matrix Ke, stored in the variable Ke, is computed according to

Ke = GT K̄eG

where G is described in beam2e, and K̄e is given by

K̄e =



EA
L

0 0 −EA
L

0 0

0 12EI
L3 φ5

6EI
L2 φ2 0 −12EI

L3 φ5
6EI
L2 φ2

0 6EI
L2 φ2

4EI
L
φ3 0 −6EI

L2 φ2
2EI
L
φ4

−EA
L

0 0 EA
L

0 0

0 −12EI
L3 φ5 −6EI

L2 φ2 0 12EI
L3 φ5 −6EI

L2 φ2

0 6EI
L2 φ2

2EI
L
φ4 0 −6EI

L2 φ2
4EI
L
φ3


For axial compression (N < 0), we have

φ1 =
kL

2
cot

kL

2
φ2 =

1

12

k2L2

(1− φ1)
φ3 =

1

4
φ1 +

3

4
φ2

φ4 = −1

2
φ1 +

3

2
φ2 φ5 = φ1φ2

with

k =
π

L

√
ρ

For axial tension (N > 0), we have

φ1 =
kL

2
coth

kL

2
φ2 = − 1

12

k2L2

(1− φ1)
φ3 =

1

4
φ1 +

3

4
φ2

φ4 = −1

2
φ1 +

3

2
φ2 φ5 = φ1φ2

with

k =
π

L

√
−ρ

The parameter ρ is given by

ρ = − NL2

π2EI
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Two dimensional beam element beam2g

The equivalent nodal loads f e
l stored in the variable fe are computed according to

f e
l = GT f̄ e

where

f̄ e = qL
[

0
1

2

L

12
ψ 0

1

2
− L

12
ψ
]T

For an axial compressive force, we have

ψ = 6

(
2

(kL)2
− 1 + cos kL

kL sin kL

)

and for an axial tensile force

ψ = 6

(
1 + cosh kL

kL sinh kL
− 2

(kL)2

)
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beam2gs Two dimensional beam element

Purpose:

Compute section forces in a two dimensional nonlinear beam element.

N1

M1

x

y

V1

N2
M2

V2

Syntax:

es=beam2gs(ex,ey,ep,ed,N)
es=beam2gs(ex,ey,ep,ed,N,eq)

Description:

beam2gs computes the section forces at the ends of the nonlinear beam element
beam2g.

The input variables ex, ey, and ep are defined in beam2e, and the variables N and eq
in beam2g. The element displacements, stored in ed, are obtained by the function
extract. If a distributed transversal load is applied to the element, the variable eq
must be included.

The output variable

es =

[
N1 V1 M1

N2 V2 M2

]

contains the section forces at the ends of the beam.
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Two dimensional beam element beam2gs

Theory:

The section forces at the ends of the beam are obtained from the element force vector

P̄ = [ −N1 − V1 −M1 N2 V2 M2 ]T

computed according to

P̄ = K̄e G ae − f̄l

The matrix G is described in beam2e. The matrix K̄e and the nodal displacements

ae = [ u1 u2 u3 u4 u5 u6 ]T

are described in beam2g. Note that the transpose of ae is stored in ed.

5.6 – 19 ELEMENT



beam2d Two dimensional beam element

Purpose:

Compute element stiffness, mass and damping matrices for a two dimensional beam
element.

u1

u2

u4

u5

E, A, I, m

x

y

u6

u3

(x1,y1)

(x2,y2)

x

Syntax:

[Ke,Me]=beam2d(ex,ey,ep)
[Ke,Me,Ce]=beam2d(ex,ey,ep)

Description:

beam2d provides the global element stiffness matrix Ke, the global element mass
matrix Me, and the global element damping matrix Ce, for a two dimensional beam
element.

The input variables ex and ey are described in beam2e, and

ep = [ E A I m [ a0 a1] ]

contains the modulus of elasticity E, the cross section area A, the moment of inertia
I, the mass per unit length m, and the Raleigh damping coefficients a0 and a1. If a0

and a1 are omitted, the element damping matrix Ce is not computed.
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Two dimensional beam element beam2d

Theory:

The element stiffness matrix Ke, the element mass matrix Me and the element
damping matrix Ce, stored in the variables Ke, Me and Ce, respectively, are computed
according to

Ke = GT K̄eG Me = GTM̄eG Ce = GT C̄eG

where G and K̄e are described in beam2e.

The matrix M̄e is given by

M̄e =
mL

420



140 0 0 70 0 0
0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

70 0 0 140 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2


and the matrix C̄e is computed by combining K̄e and M̄e

C̄e = a0M̄
e + a1K̄

e
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beam2ds Two dimensional beam element

Purpose:

Compute section forces for a two dimensional beam element in dynamic analysis.

N1

M1

x

y

V1

N2
M2

V2

Syntax:

es=beam2ds(ex,ey,ep,ed,ev,ea)

Description:

beam2ds computes the section forces at the ends of the dynamic beam element
beam2d.

The input variables ex, ey, and ep are defined in beam2d. The element displace-
ments, the element velocities, and the element accelerations, stored in ed, ev, and ea
respectively, are obtained by the function extract.

The output variable

es =

[
N1 V1 M1

N2 V2 M2

]

contains the section forces at the ends of the beam.
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Two dimensional beam element beam2ds

Theory:

The section forces at the ends of the beam are obtained from the element force vector

P̄ = [ −N1 − V1 −M1 N2 V2 M2 ]T

computed according to

P̄ = K̄e G ae + C̄e G ȧe + M̄e G äe

The matrices K̄e and G are described in beam2e, and the matrices M̄e and C̄e are
described in beam2d. The nodal displacements

ae = [ u1 u2 u3 u4 u5 u6 ]T

shown in beam2d also define the directions of the nodal velocities

ȧe = [ u̇1 u̇2 u̇3 u̇4 u̇5 u̇6 ]T

and the nodal accelerations

äe = [ ü1 ü2 ü3 ü4 ü5 ü6 ]T

Note that the transposes of ae, ȧe, and äe are stored in ed, ev, and ea respectively.
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beam3e Three dimensional beam element

Purpose:

Compute element stiffness matrix for a three dimensional beam element.

z
x

y

u1

u2

u4

u5

u6

u3

u7

u8

u10

u11

u12

u9

(x1,y1,z1)

(x2,y2,z2)

y
x

z

Syntax:

Ke=beam3e(ex,ey,ez,eo,ep)
[Ke,fe]=beam3e(ex,ey,ez,eo,ep,eq)

Description:

beam3e provides the global element stiffness matrix Ke for a three dimensional beam
element.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]
ez = [ z1 z2 ]

eo = [ xz̄ yz̄ zz̄ ]

supply the element nodal coordinates x1, y1, etc. as well as the direction of the local
beam coordinate system (x̄, ȳ, z̄). By giving a global vector (xz̄, yz̄, zz̄) parallel with
the positive local z̄ axis of the beam, the local beam coordinate system is defined.
The variable

ep = [ E G A Iȳ Iz̄ Kv ]

supplies the modulus of elasticity E, the shear modulus G, the cross section area
A, the moment of inertia with respect to the ȳ axis Iy, the moment of inertia with
respect to the z̄ axis Iz, and St Venant torsional stiffness Kv.
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Three dimensional beam element beam3e

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

eq = [ qx̄ qȳ qz̄ qω̄ ]

then contains the distributed loads. The positive directions of qx̄, qȳ, and qz̄ follow
the local beam coordinate system. The distributed torque qω̄ is positive if directed
in the local x̄-direction, i.e. from local ȳ to local z̄. All the loads are per unit length.

Theory:

The element stiffness matrix Ke is computed according to

Ke = GT K̄eG

where

K̄e =



k1 0 0 0 0 0 −k1 0 0 0 0 0
0 12EIz̄

L3 0 0 0 6EIz̄

L2 0 −12EIz̄

L3 0 0 0 6EIz̄

L2

0 0 12EIȳ

L3 0 −6EIȳ

L2 0 0 0 −12EIȳ

L3 0 −6EIȳ

L2 0
0 0 0 k2 0 0 0 0 0 −k2 0 0

0 0 −6EIȳ

L2 0 4EIȳ

L
0 0 0 6EIȳ

L2 0 2EIȳ

L
0

0 6EIz̄

L2 0 0 0 4EIz̄

L
0 −6EIz̄

L2 0 0 0 2EIz̄

L

−k1 0 0 0 0 0 k1 0 0 0 0 0
0 −12EIz̄

L3 0 0 0 −6EIz̄

L2 0 12EIz̄

L3 0 0 0 −6EIz̄

L2

0 0 −12EIȳ

L3 0 6EIȳ

L2 0 0 0 12EIȳ

L3 0 6EIȳ

L2 0
0 0 0 −k2 0 0 0 0 0 k2 0 0

0 0 −6EIȳ

L2 0 2EIȳ

L
0 0 0 6EIȳ

L2 0 4EIȳ

L
0

0 6EIz̄

L2 0 0 0 2EIz̄

L
0 −6EIz̄

L2 0 0 0 4EIz̄

L


in which k1 = EA

L
and k2 = GKv

L
, and where

G =



nxx̄ nyx̄ nzx̄ 0 0 0 0 0 0 0 0 0
nxȳ nyȳ nzȳ 0 0 0 0 0 0 0 0 0
nxz̄ nyz̄ nzz̄ 0 0 0 0 0 0 0 0 0
0 0 0 nxx̄ nyx̄ nzx̄ 0 0 0 0 0 0
0 0 0 nxȳ nyȳ nzȳ 0 0 0 0 0 0
0 0 0 nxz̄ nyz̄ nzz̄ 0 0 0 0 0 0
0 0 0 0 0 0 nxx̄ nyx̄ nzx̄ 0 0 0
0 0 0 0 0 0 nxȳ nyȳ nzȳ 0 0 0
0 0 0 0 0 0 nxz̄ nyz̄ nzz̄ 0 0 0
0 0 0 0 0 0 0 0 0 nxx̄ nyx̄ nzx̄

0 0 0 0 0 0 0 0 0 nxȳ nyȳ nzȳ

0 0 0 0 0 0 0 0 0 nxz̄ nyz̄ nzz̄
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beam3e Three dimensional beam element

The element length L is computed according to

L =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

In the transformation matrix G, nxx̄ specifies the cosine of the angle between the x
axis and x̄ axis, and so on.

The element load vector f e
l , stored in fe, is computed according to

f e
l = GT f̄ e

l

where

f̄ e
l =



qx̄L

2
qȳL

2
qz̄L

2
qω̄L

2

−qz̄L
2

12
qȳL

2

12
qx̄L

2
qȳL

2
qz̄L

2
qω̄L

2
qz̄L

2

12

−qȳL
2

12
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Three dimensional beam element beam3s

Purpose:

Compute section forces in a three dimensional beam element.

z
x

y

Tn

My,n

Mz,n

Nn

Vz,n

My,1

T1

Mz,1

N1
Vy,1

Vz,1

Vy,n

y
x

z

T
N

Mz
Vz

Vy

My

T
N

My

Vy

Vz
Mz

Syntax:

es=beam3s(ex,ey,ez,eo,ep,ed)
es=beam3s(ex,ey,ez,eo,ep,ed,eq)
[es,edi,eci]=beam3s(ex,ey,ez,eo,ep,ed,eq,n)

Description:

beam3s computes the section forces and displacements in local directions along the
beam element beam3e.

The input variables ex, ey, ez, eo, and ep are defined in beam3e, and the element
displacements, stored in ed, are obtained by the function extract. If distributed
loads are applied to the element, the variable eq must be included. The number of
evaluation points for section forces and displacements are determined by n. If n is
omitted, only the ends of the beam are evaluated.

The output variables

es = [ N Vȳ Vz̄ T Mȳ Mz̄ ] edi = [ ū v̄ w̄ ϕ̄ ] eci = [ x̄ ]

consist of column matrices that contain the section forces, the displacements, and
the evaluation points on the local x̄-axis. The explicit matrix expressions are

es =


N1 Vȳ1 Vz̄1 T Mȳ1 Mz̄1

N2 Vȳ2 Vz̄2 T Mȳ2 Mz̄2
...

...
...

...
...

...
Nn Vȳn Vz̄n T Mȳn Mz̄n
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beam3s Three dimensional beam element

edi =


ū1 v̄1 w̄1 ϕ̄1

ū2 v̄2 w̄2 ϕ̄2
...

...
...

...
ūn v̄n w̄n ϕ̄n

 eci =



0
x̄2
...

x̄n−1

L


where L is the length of the beam element.

Theory:

The evaluation of the section forces is based on the solutions of the basic equations

EA
d2ū

dx̄2
+ qx̄ = 0 EIz

d4v̄

dx̄4
− qȳ = 0

EIy
d4w̄

dx̄4
− qz̄ = 0 GKv

d2ϕ̄

dx̄2
+ qω̄ = 0

From these equations, the displacements along the beam element are obtained as the
sum of the homogeneous and the particular solutions

u =


ū(x̄)
v̄(x̄)
w̄(x̄)
ϕ̄(x̄)

 = uh + up

where

uh = N̄ C−1 G ae up =


ūp(x̄)
v̄p(x̄)
w̄p(x̄)
ϕ̄p(x̄)

 =



qx̄Lx̄

2EA
(1− x̄

L
)

qȳL
2x̄2

24EIz
(1− x̄

L
)2

qz̄L
2x̄2

24EIy
(1− x̄

L
)2

qω̄Lx̄

2GKv

(1− x̄

L
)


and

N̄ =


1 x̄ 0 0 0 0 0 0 0 0 0 0
0 0 1 x̄ x̄2 x̄3 0 0 0 0 0 0
0 0 0 0 0 0 1 x̄ x̄2 x̄3 0 0
0 0 0 0 0 0 0 0 0 0 1 x̄
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Three dimensional beam element beam3s

C =



1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
1 L 0 0 0 0 0 0 0 0 0 0
0 0 1 L L2 L3 0 0 0 0 0 0
0 0 0 0 0 0 1 L L2 L3 0 0
0 0 0 0 0 0 0 0 0 0 1 L
0 0 0 0 0 0 0 1 2L 3L2 0 0
0 0 0 1 2L 3L2 0 0 0 0 0 0



ae =


u1

u2
...
u12



The transformation matrix Ge and nodal displacements ae are described in beam3e.
Note that the transpose of ae is stored in ed.

Finally the section forces are obtained from

N = EA
dū

dx̄
Vȳ = −EIz

d3v̄

dx̄3
Vz̄ = −EIy

d3w̄

dx̄3

T = GKv
dϕ̄

dx̄
Mȳ = EIy

d2w̄

dx̄2
Mz̄ = EIz

d2v̄

dx̄2

Examples:

Section forces or element displacements can easily be plotted. The bending moment
Mȳ along the beam is plotted by

>> plot(eci,es(:,5))
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5.7 Plate element

Only one plate element is currently available, a rectangular 12 dof element. The element
presumes a linear elastic material which can be isotropic or anisotropic.

Plate elements

u8

u9

u2

u3 u6

u4u1

u5

u7

u11

u10

u12

platre

Plate functions
platre Compute element matrices
platrs Compute section forces
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platre Plate element

Purpose:

Compute element stiffness matrix for a rectangular plate element.

z
x

y

(x4 ,y4)

(x1 ,y1)

(x3 ,y3)

(x2 ,y2)

t

u8

u9

u2

u3 u6

u4u1

u5

u7

u11

u10

u12

Syntax:

Ke=platre(ex,ey,ep,D)
[Ke,fe]=platre(ex,ey,ep,D,eq)

Description:

platre provides an element stiffness matrix Ke, and an element load vector fe, for a
rectangular plate element. This element can only be used if the element edges are
parallel to the coordinate axis.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey, the element thickness t by ep, and the material properties by the constitutive
matrix D. Any arbitrary D-matrix with dimensions (3× 3) and valid for plane stress
may be given. For an isotropic elastic material the constitutive matrix can be formed
by the function hooke, see Section 4.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ t ] D =

 D11 D12 D13

D21 D22 D23

D31 D32 D33


If a uniformly distributed load is applied to the element, the element load vector fe
is computed. The input variable

eq = [ qz ]

then contains the load qz per unit area in the z-direction.
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Plate element platre

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe
respectively, are computed according to

Ke = (C−1)T
∫

A
B̄

T
D̃ B̄ dA C−1

fel = (C−1)T
∫

A
N̄

T
qz dA

where the constitutive matrix

D̃ =
t3

12
D

and where D is defined by D.

The evaluation of the integrals for the rectangular plate element is based on the
displacement approximation w(x, y) and is expressed in terms of the nodal variables
u1, u2, ... , u12 as

w(x, y) = Ne ae = N̄ C−1 ae

where

N̄ =
[

1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3
]

C =



1 −a −b a2 ab b2 −a3 −a2b −ab2 −b3 a3b ab3

0 0 1 0 −a −2b 0 a2 2ab 3b2 −a3 −3ab2

0 −1 0 2a b 0 −3a2 −2ab −b2 0 3a2b b3

1 a −b a2 −ab b2 a3 −a2b ab2 −b3 −a3b −ab3
0 0 1 0 a −2b 0 a2 −2ab 3b2 a3 3ab2

0 −1 0 −2a b 0 −3a2 2ab −b2 0 3a2b b3

1 a b a2 ab b2 a3 a2b ab2 b3 a3b ab3

0 0 1 0 a 2b 0 a2 2ab 3b2 a3 3ab2

0 −1 0 −2a −b 0 −3a2 −2ab −b2 0 −3a2b −b3
1 −a b a2 −ab b2 −a3 a2b −ab2 b3 −a3b −ab3
0 0 1 0 −a 2b 0 a2 −2ab 3b2 −a3 −3ab2

0 −1 0 2a −b 0 −3a2 2ab −b2 0 −3a2b −b3



ae = [ u1 u2 ... u12 ]T

and where

a =
1

2
(x3 − x1) and b =

1

2
(y3 − y1)

The matrix B̄ is obtained as

B̄ =
∗
∇N̄ =

 0 0 0 2 0 0 6x 2y 0 0 6xy 0
0 0 0 0 0 2 0 0 2x 6y 0 6xy
0 0 0 0 2 0 0 4x 4y 0 6x2 6y2
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platre Plate element

where

∗
∇ =



∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y


Evaluation of the integrals for the rectangular plate element is done analytically.
Computation of the integrals for the element load vector f e

l yields

f e
l = qzLxLy

[
1

4

Ly

24
− Lx

24

1

4

Ly

24

Lx

24

1

4
− Ly

24

Lx

24

1

4
− Ly

24
− Lx

24

]T
where

Lx = x3 − x1 and Ly = y3 − y1
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Plate element platrs

Purpose:

Compute section forces in a rectangular plate element.

Mxy

Mxy

MxyMxy Mxx

Myy

Myy

Vxz

Vyz

Vxz

Vyz

Mxx

z
x

y

(x4 ,y4)

(x1 ,y1)

(x3 ,y3)

(x2 ,y2)

t

u8

u9

u2

u3 u6

u4u1

u5

u7

u11

u10

u12

Syntax:

[es,et]=platrs(ex,ey,ep,D,ed)

Description:

platrs computes the section forces es and the curvature matrix et in a rectangular
plate element. The section forces and the curvatures are computed at the center of
the element.

The input variables ex, ey, ep and D are defined in platre. The vector ed contains the
nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 ... u12 ]

The output variables

es =
[
MT VT

]
= [ Mxx Myy Mxy Vxz Vyz ]

et = κT = [ κxx κyy κxy ]

contain the section forces and curvatures in global directions.
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platrs Plate element

Theory:

The curvatures and the section forces are computed according to

κ =

 κxx

κyy

κxy

 = B̄ C−1 ae

M =

 Mxx

Myy

Mxy

 = D̃ κ

V =

[
Vxz

Vyz

]
= ∇̃ M

where the matrices D̃, B̄, C and ae are described in platre, and where

∇̃ =


∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x
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6 System functions

6.1 Introduction

The group of system functions comprises functions for the setting up, solving, and elimi-
nation of systems of equations. The functions are separated in two groups:

Static system functions

Dynamic system functions

Static system functions concern the linear system of equations

Ka = f

where K is the global stiffness matrix and f is the global load vector. Often used static
system functions are assem and solveq. The function assem assembles the global stiffness
matrix and solveq computes the global displacement vector a considering the boundary
conditions. It should be noted that K, f , and a also represent analogous quantities in
systems others than structural mechanical systems. For example, in a heat flow problem
K represents the conductivity matrix, f the heat flow, and a the temperature.

Dynamic system functions are related to different aspects of linear dynamic systems of
coupled ordinary differential equations according to

C ḋ + K d = f

for first-order systems and
Md̈ + Cḋ + Kd = f

for second-order systems. First-order systems occur typically in transient heat conduction
and second-order systems occur in structural dynamics.

6.1 – 1 SYSTEM





6.2 Static system functions

The group of static system functions comprises functions for setting up and solving the
global system of equations. It also contains a function for eigenvalue analysis, a function
for static condensation, a function for extraction of element displacements from the global
displacement vector and a function for extraction of element coordinates.

The following functions are available for static analysis:

Static system functions
assem Assemble element matrices
coordxtr Extract element coordinates from a global coordinate matrix.
eigen Solve a generalized eigenvalue problem
extract Extract values from a global vector
insert Assemble element internal force vector
solveq Solve a system of equations
statcon Perform static condensation
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assem Static system functions

Purpose:

Assemble element matrices.

kii

kji

e

e

kij

kjj

e

e

i j
i

j
eK

i = dofi

j = dofj

K

kii + kii

kji + kji

k21

kij + kij

kjj + kjj

knn

k11 k12

e

e

e

e

i j

i

j
......

......

...... . . . . . .

. . . . . .

......

..

..

..

..

..

..

Syntax:

K=assem(edof,K,Ke)
[K,f]=assem(edof,K,Ke,f,fe)

Description:

assem adds the element stiffness matrix Ke, stored in Ke, to the structure stiffness
matrix K, stored in K, according to the topology matrix edof.

The element topology matrix edof is defined as

edof = [el dof1 dof2 . . . dofned︸ ︷︷ ︸
global dof.

]

where the first column contains the element number, and the columns 2 to (ned+ 1)
contain the corresponding global degrees of freedom (ned = number of element de-
grees of freedom).

In the case where the matrix Ke is identical for several elements, assembling of these
can be carried out simultaneously. Each row in Edof then represents one element,
i.e. nel is the total number of considered elements.

Edof =


el1
el2
...

elnel

dof1 dof2 . . . dofned

dof1 dof2 . . . dofned
...

...
...

dof1 dof2 . . . dofned


 one row for each element

If fe and f are given in the function, the element load vector f e is also added to the
global load vector f .
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Static system functions coordxtr

Purpose:

Extract element coordinates from a global coordinate matrix.
ln

kn

(xn ,yn)

l1

k1

l6

k6

l2

k2

l5

k5

(x2, y2)

1 2

(x6, y6)

(x1, y1) (x5 , y5)

4

nel

nen =4

5

3

Ex =   x1  x2  x7  x6

Ey =   y1  y2  y7  y6

●● ●● ●

●● ●● ●

●● ●● ●

●● ●● ●

●● ●● ●

...

...

Syntax:

[Ex,Ey,Ez]=coordxtr(Edof,Coord,Dof,nen)

Description:

coordxtr extracts element nodal coordinates from the global coordinate matrix Coord
for elements with equal numbers of element nodes and dof’s.

Input variables are the element topology matrix Edof, defined in assem, the global
coordinate matrix Coord, the global topology matrix Dof, and the number of element
nodes nen in each element.

Coord =



x1 y1 [z1]
x2 y2 [z2]
x3 y3 [z3]
...

...
...

xn yn [zn]

 Dof =



k1 l1 ... m1

k2 l2 ... m2

k3 l3 ... m3
...

... ...
...

kn ln ... mn

 nen = [ nen ]

The nodal coordinates defined in row i of Coord correspond to the degrees of freedom
of row i in Dof. The components ki, li and mi define the degrees of freedom of node
i, and n is the number of global nodes for the considered part of the FE-model.
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coordxtr Static system functions

The output variables Ex, Ey, and Ez are matrices defined according to

Ex =


x1

1 x2
1 x3

1 ... xnen
1

x1
2 x2

2 x3
2 ... xnen

2

...
...

...
...

...
x1

nel x2
nel x3

nel ... xnen
nel


where row i gives the x-coordinates of the element defined in row i of Edof, and
where nel is the number of considered elements.

The element coordinate data extracted by the function coordxtr can be used for
plotting purposes and to create input data for the element stiffness functions.
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Static system functions eigen

Purpose:

Solve the generalized eigenvalue problem.

Syntax:

L=eigen(K,M)
L=eigen(K,M,b)
[L,X]=eigen(K,M)
[L,X]=eigen(K,M,b)

Description:

eigen solves the eigenvalue problem

| K− λM |= 0

where K and M are square matrices. The eigenvalues λ are stored in the vector L
and the corresponding eigenvectors in the matrix X.

If certain rows and columns in matrices K and M are to be eliminated in computing
the eigenvalues, b must be given in the function. The rows (and columns) that are
to be eliminated are described in the vector b defined as

b =


dof1

dof2
...

dofnb


The computed eigenvalues are given in order ranging from the smallest to the largest.
The eigenvectors are normalized in order that

XT MX = I

where I is the identity matrix.
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extract Static system functions

Purpose:

Extract element nodal quantities from a global solution vector.

=

ai

aj

am

an

ai

aj

am

an

u1

u2

u3

u4

edof = [eln   i   j   m   n ]
ed = [ u1   u2   u3   u4 ]

...

..

.

..

Syntax:

ed=extract(edof,a)

Description:

extract extracts element displacements or corresponding quantities ae from the global
solution vector a, stored in a.

Input variables are the element topology matrix edof, defined in assem, and the global
solution vector a.

The output variable

ed = (ae)T

contains the element displacement vector.

If Edof contains more than one element, Ed will be a matrix

Ed =


(ae)T

1

(ae)T
2

...

(ae)T
nel


where row i gives the element displacements for the element defined in row i of Edof,
and nel is the total number of considered elements.

SYSTEM 6.2 – 6



Static system functions extract

Example:

For the two dimensional beam element, the extract function will extract six nodal
displacements for each element given in Edof, and create a matrix Ed of size (nel × 6).

Ed =


u1 u2 u3 u4 u5 u6

u1 u2 u3 u4 u5 u6
...

...
...

...
...

...
u1 u2 u3 u4 u5 u6
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insert Static system functions

Purpose:

Assemble internal element forces in a global force vector.

fi

fj

e

e

f e

i = dofi

j = dofj

f1

f2....
fi + fi

e

fj + fj
e

....
fn

f

Syntax:

f=insert(edof,f,ef)

Description:

insert adds the internal element load vector f e
i , stored in ef, to the global internal

force vector f, stored in f, according to the topology matrix edof. The function is for
use in nonlinear analysis.

The element topology matrix edof is defined in assem. The vector f is the global
internal force vector, and the vector ef is the internal element force vector computed
from the element stresses, see for example plani4f.
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Static system functions solveq

Purpose:

Solve equation system.

Syntax:

a=solveq(K,f)
a=solveq(K,f,bc)
[a,Q]=solveq(K,f,bc)

Description:

solveq solves the equation system

K a = f

where K is a matrix and a and f are vectors.

The matrix K and the vector f must be predefined. The solution of the system of
equations is stored in a vector a which is created by the function.

If some values of a are to be prescribed, the row number and the corresponding values
are given in the boundary condition matrix

bc =


dof1

dof2
...

dofnbc

u1

u2
...

unbc


where the first column contains the row numbers and the second column the corre-
sponding prescribed values.

If Q is given in the function, reaction forces are computed according to

Q = K a− f
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statcon Static system functions

Purpose:

Reduce system of equations by static condensation.

Syntax:

[K1,f1]=statcon(K,f,b)

Description:

statcon reduces a system of equations

K a = f

by static condensation.

The degrees of freedom to be eliminated are supplied to the function by the vector

b =


dof1

dof2
...

dofnb


where each row in b contains one degree of freedom to be eliminated.

The elimination gives the reduced system of equations

K1 a1 = f1

where K1 and f1 are stored in K1 and f1 respectively.
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6.3 Dynamic system functions

The group of system functions comprises functions for solving linear dynamic systems by
time stepping or modal analysis, functions for frequency domain analysis, etc.

Dynamic system functions
dyna2 Solve a set of uncoupled second-order differential equations
dyna2f Solve a set of uncoupled second-order differential equations in the

frequency domain
fft Fast Fourier transform
freqresp Compute frequency response
gfunc Linear interpolation between equally spaced points
ifft Inverse Fast Fourier transform
ritz Compute approximative eigenvalues and eigenvectors by the Lanc-

zos method
spectra Compute seismic response spectra
step1 Carry out step-by-step integration in first-order systems
step2 Carry out step-by-step integration in second-order systems
sweep Compute frequency response function

Note: Eigenvalue analysis is performed by using the function eigen; see static system
functions.
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dyna2 Dynamic system functions

Purpose:

Compute the dynamic solution to a set of uncoupled second-order differential equa-
tions.

Syntax:

X=dyna2(w2,xi,f,g,dt)

Description:

dyna2 computes the solution to the set

ẍi + 2ξiωiẋi + ω2
i xi = fig(t), i = 1, ...,m

of differential equations, where g(t) is a piecewise linear time function.

The set of vectors w2, xi and f contains the squared circular frequencies ω2
i , the

damping ratios ξi and the applied forces fi, respectively. The vector g defines the
load function in terms of straight line segments between equally spaced points in
time. This function may have been formed by the command gfunc.

The dynamic solution is computed at equal time increments defined by dt. Including
the initial zero vector as the first column vector, the result is stored in the m-by-n
matrix X, n− 1 being the number of time steps.

Note:

The accuracy of the solution is not a function of the output time increment dt, since
the command produces the exact solution for straight line segments in the loading
time function.

See also:

gfunc
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Dynamic system functions dyna2f

Purpose:

Compute the dynamic solution to a set of uncoupled second-order differential equa-
tions.

Syntax:

Y=dyna2f(w2,xi,f,p,dt)

Description:

dyna2f computes the solution to the set

ẍi + 2ξiωiẋi + ω2
i xi = fig(t), i = 1, ...,m

of differential equations in the frequency domain.

The vectors w2, xi and f are the squared circular frequencies ω2
i , the damping ratios

ξi and the applied forces fi, respectively. The force vector p contains the Fourier
coefficients p(k) formed by the command fft.

The solution in the frequency domain is computed at equal time increments defined
by dt. The result is stored in the m-by-n matrix Y, where m is the number of
equations and n is the number of frequencies resulting from the fft command. The
dynamic solution in the time domain is achieved by the use of the command ifft.

Example:

The dynamic solution to a set of uncoupled second-order differential equations can
be computed by the following sequence of commands:

>> g=gfunc(G,dt);

>> p=fft(g);

>> Y=dyna2f(w2,xi,f,p,dt);

>> X=(real(ifft(Y.’)))’;

where it is assumed that the input variables G, dt, w2, xi and f are properly defined.
Note that the ifft command operates on column vectors if Y is a matrix; therefore
use the transpose of Y. The output from the ifft command is complex. Therefore
use Y.’ to transpose rows and columns in Y in order to avoid the complex conjugate
transpose of Y; see Section 3. The time response is represented by the real part of
the output from the ifft command. If the transpose is used and the result is stored
in a matrix X, each row will represent the time response for each equation as the
output from the command dyna2.

See also:

gfunc, fft, ifft
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fft Dynamic system functions

Purpose:

Transform functions in time domain to frequency domain.

Syntax:

p=fft(g)
p=fft(g,N)

Description:

fft transforms a time dependent function to the frequency domain.

The function to be transformed is stored in the vector g. Each row in g contains
the value of the function at equal time intervals. The function represents a span
−∞ ≤ t ≤ +∞ ; however, only the values within a typical period are specified by g.

The fft command can be used with one or two input arguments. If N is not specified,
the numbers of frequencies used in the transformation is equal to the the numbers
of points in the time domain, i.e. the length of the variable g, and the output will
be a vector of the same size containing complex values representing the frequency
content of the input signal.

The scalar variable N can be used to specify the numbers of frequencies used in the
Fourier transform. The size of the output vector in this case will be equal to N.
It should be remembered that the highest harmonic component in the time signal
that can be identified by the Fourier transform corresponds to half the sampling
frequency. The sampling frequency is equal to 1/dt, where dt is the time increment
of the time signal.

The complex Fourier coefficients p(k) are stored in the vector p, and are computed
according to

p(k) =
N∑

j=1

x(j)ω
(j−1)(k−1)
N ,

where

ωN = e−2πi/N .

Note:

This is a MATLAB built-in function.
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Dynamic system functions freqresp

Purpose:

Compute frequency response of a known discrete time response.

Syntax:

[Freq,Resp] = freqresp(D,dt)

Description:

freqresp computes the frequency response of a discrete dynamic system.

D is the time history function and dt is the sampling time increment, i.e. the time
increment used in the time integration procedure.

Resp contains the computed response as a function of frequency. Freq contains the
corresponding frequencies.

Example:

The result can be visualized by

>> plot(Freq,Resp)

>> xlabel(’frequency (Hz)’)

or

>> semilogy(Freq,Resp)

>> xlabel(’frequency (Hz)’)

The dimension of Resp is the same as that of the original time history function.

Note:

The time history function of a discrete system computed by direct integration behaves
often in an unstructured manner. The reason for this is that the time history is a
mixture of several participating eigenmodes at different eigenfrequencies. By using a
Fourier transform, however, the response as a function of frequency can be computed
efficiently. In particular it is possible to identify the participating frequencies.
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gfunc Dynamic system functions

Purpose:

Form vector with function values at equally spaced points by linear interpolation.

●

●

●

●

●

t

g(t)

●

(t2,g(t2))

(t1,g(t1))

(t3,g(t3))

(t4,g(t4))

(t5,g(t5))

(tN,g(tN))

●

Syntax:

[t,g]=gfunc(G,dt)

Description:

gfunc uses linear interpolation to compute values at equally spaced points for a
discrete function g given by

G =


t1 g(t1)
t2 g(t2)
...
tN g(tN)

 ,

as shown in the figure above.

Function values are computed in the range t1 ≤ t ≤ tN , at equal increments, dt being
defined by the variable dt. The number of linear segments (steps) is (tN − t1)/dt.
The corresponding vector t is also computed. The result can be plotted by using the
command plot(t,g).

SYSTEM 6.3 – 6



Dynamic system functions ifft

Purpose:

Transform function in frequency domain to time domain.

Syntax:

x=ifft(y)
x=ifft(y,N)

Description:

ifft transforms a function in the frequency domain to a function in the time domain.

The function to be transformed is given in the vector y. Each row in y contains
Fourier terms in the interval −∞ ≤ ω ≤ +∞.

The fft command can be used with one or two input arguments. The scalar variable
N can be used to specify the numbers of frequencies used in the Fourier transform.
The size of the output vector in this case will be equal to N. See also the description
of the command fft.

The inverse Fourier coefficients x(j), stored in the variable x, are computed according
to

x(j) = (1/N)
N∑

k=1

y(k)ω
−(j−1)(k−1)
N ,

where

ωN = e−2πi/N .

Note:

This is a MATLAB built-in function.

See also:

fft

6.3 – 7 SYSTEM



ritz Dynamic system functions

Purpose:

Compute approximative eigenvalues and eigenvectors by the Lanczos method.

Syntax:

L=ritz(K,M,f,m)
L=ritz(K,M,f,m,b)
[L,X]=ritz(K,M,f,m)
[L,X]=ritz(K,M,f,m,b)

Description:

ritz computes, by the use of the Lanczos algorithm, m approximative eigenvalues and
m corresponding eigenvectors for a given pair of n-by-n matrices K and M and a
given non-zero starting vector f.

If certain rows and columns in matrices K and M are to be eliminated in computing
the eigenvalues, b must be given in the command. The rows (and columns) to be
eliminated are described in the vector b defined as

b =


dof1

dof2
...

dofnb

 .

Note:

If the number of vectors, m, is chosen less than the total number of degrees-of-
freedom, n, only about the first m/2 Ritz vectors are good approximations of the
true eigenvectors. Recall that the Ritz vectors satisfy the M-orthonormality condition

XT M X = I,

where I is the identity matrix.
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Dynamic system functions spectra

Purpose:

Compute seismic response spectra for elastic design.

Syntax:

s=spectra(a,xi,dt,f)

Description:

spectra computes the seismic response spectrum for a known acceleration history
function.

The computation is based on the vector a, that contains an acceleration time history
function defined at equal time steps. The time step is specified by the variable dt.
The value of the damping ratio is given by the variable xi.

Output from the computation, stored in the vector s, is achieved at frequencies
specified by the column vector f.

Example:

The following procedure can be used to produce a seismic response spectrum for a
damping ratio ξ = 0.05, defined at 34 logarithmicly spaced frequency points. The
acceleration time history a has been sampled at a frequency of 50 Hz, corresponding
to a time increment dt = 0.02 between collected points:

>> freq=logspace(0,log10(2^(33/6)),34);

>> xi=0.05;

>> dt=0.02;

>> s=spectra(a,xi,dt,freq’);

The resulting spectrum can be plotted by the command

>> loglog(freq,s,’*’)
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step1 Dynamic system functions

Purpose:

Compute the dynamic solution to a set of first order differential equations.

Syntax:

Tsnap=step1(K,C,d0,ip,f,pbound)
[Tsnap,D,V]=step1(K,C,d0,ip,f,pbound)

Description:

step1 computes at equal time steps the solution to a set of first order differential
equations of the form

Cḋ + Kd = f(x, t),

d(0) = d0.

The command solves transient field problems. In the case of heat conduction, K and
C represent the n× n conductivity and capacity matrices, respectively.

The initial conditions are given by the vector d0 containing initial values of d. The
time integration procedure is governed by the parameters given in the vector ip
defined as

ip = [dt T α [nsnap nhist timei ... dofi ... ]] ,

︸ ︷︷ ︸
list of
nsnap
moments

︸ ︷︷ ︸
list of
nhist
dofs

where dt specifies the time increment in the time stepping scheme, T total time and
α a time integration constant; see [1]. The parameter nsnap denotes the number of
snapshots stored in Tsnap. The selected elapsed times are specified in (timei ... ),
whereas nhist is the number of time histories stored in D and V. The selected degrees-
of-freedom are specified in (dofi ... ). The following table lists frequently used values
of α:

α = 0 Forward difference; forward Euler,

α = 1
2

Trapezoidal rule; Crank-Nicholson,

α = 1 Backward difference; backward Euler.

The matrix f contains the time-dependent load vectors. If no external loads are
active, the matrix corresponding to f should be replaced by []. The matrix f contains
the time-dependent prescribed values of the field variable. If no field variables are
prescribed the matrix corresponding to pbound should be replaced by []. Matrix f is
organized in the following manner:
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Dynamic system functions step1

f =


time history of the load at dof1

time history of the load at dof2
...
time history of the load at dofn

 .

The dimension of f is

(number of degrees-of-freedom)× (number of timesteps + 1).

The matrix pbound is organized in the following manner:

pbound =


dof1 time history of the field variable
dof2 time history of the field variable
...

...
dofm2 time history of the field variable

 .

The dimension of pbound is

(number of dofs with prescribed field values)× (number of timesteps + 2).

The time history functions can be generated using the command gfunc. If all the
values of the time histories of f or pbound are kept constant, these values need to be
stated only once. In this case the number of columns in f is one and in pbound two.

It is highly recommended to define f as sparse (a MATLAB built-in function). In
most cases only a few degrees-of-freedom are affected by the exterior load, and hence
the matrix contains only few non-zero entries.

The computed snapshots are stored in Tsnap, one column for each requested snapshot
according to ip, i.e. the dimension of Tsnap is (number of dofs) × nsnap. The
computed time histories of d and ḋ are stored in D and V, respectively, one line
for each requested degree-of-freedom according to ip. The dimension of D is nhist×
(number of timesteps + 1).
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step2 Dynamic system functions

Purpose:

Compute the dynamic solution to a set of second order differential equations.

Syntax:

Dsnap=step2(K,C,M,d0,v0,ip,f,pdisp)
[Dsnap,D,V,A]=step2(K,C,M,d0,v0,ip,f,pdisp)

Description:

step2 computes at equal time steps the solution to a second order differential equa-
tions of the form

Md̈ + Cḋ + Kd = f(x, t),

d(0) = d0,

ḋ(0) = v0.

In structural mechanics problems, K , C and M represent the n×n stiffness, damping
and mass matrices, respectively.

The initial conditions are given by the vectors d0 and v0, containing initial dis-
placements and initial velocities. The time integration procedure is governed by the
parameters given in the vector ip defined as

ip = [dt T α δ [nsnap nhist timei ... dofi ... ]] ,︸ ︷︷ ︸
list of
nsnap
moments

︸ ︷︷ ︸
list of
nhist
dofs

where dt specifies the time increment in the time stepping scheme, T the total time
and α and δ time integration constants for the Newmark family of methods; see
[1]. The parameter nsnap denotes the number of snapshots stored in Dsnap. The
selected elapsed times are specified in (timei ... ), whereas nhist is the number of
time histories stored in D, V and A. The selected degrees-of-freedom are specified in
(dofi ... ). The following table lists frequently used values of α and δ:

α = 1
4

δ = 1
2

Average acceleration (trapezoidal) rule,

α = 1
6

δ = 1
2

Linear acceleration,

α = 0 δ = 1
2

Central difference.

The matrix f contains the time-dependent load vectors. If no external loads are active,
the matrix corresponding to f should be replaced by []. The matrix pdisp contains
the time-dependent prescribed displacement. If no displacements are prescribed the
matrix corresponding to pdisp should be replaced by [].

The matrix f is organized in the following manner:
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Dynamic system functions step2

f =


time history of the load at dof1

time history of the load at dof2
...
time history of the load at dofn

 .

The dimension of f is

(number of degrees-of-freedom)× (number of timesteps + 1).

The matrix pdisp is organized in the following manner

pdisp =


dof1 time history of the displacement
dof2 time history of the displacement
...

...
dofm2 time history of the displacement

 .

The dimension of pdisp is

(number of dofs with prescribed displacement)× (number of timesteps + 2).

The time history functions can be generated using the command gfunc. If all the
values of the time histories of f or pdisp are kept constant, these values need to be
stated only once. In this case the number of columns in f is one and in pdisp two.

It is highly recommended to define f as sparse (a MATLAB built-in function). In
most cases only a few degrees-of-freedom are affected by the exterior load, and hence
the matrix contains only few non-zero entries.

The computed displacement snapshots are stored in Dsnap, one column for each
requested snapshot according to ip, i.e. the dimension of Dsnap is (number of dofs)×
nsnap. The computed time histories of d, ḋ and d̈ are stored in D, V and A,
respectively, one line for each requested degree-of-freedom according to ip. The
dimension of D is nhist× (number of timesteps + 1).
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sweep Dynamic system functions

Purpose:

Compute complex frequency response functions.

Syntax:

Y=sweep(K,C,M,p,w)

Description:

sweep computes the complex frequency response function for a system of the form

[K + iωC− ω2M]y(ω) = p.

Here K, C and M represent the m-by-m stiffness, damping and mass matrices, re-
spectively. The vector p defines the amplitude of the force. The frequency response
function is computed for the values of ω given by the vector w.

The complex frequency response function is stored in the matrix Y with dimension
m-by-n, where n is equal to the number of circular frequencies defined in w.

Example:

The steady-state response can be computed by

>> X=real(Y*exp(i*w*t));

and the amplitude by

>> Z=abs(Y);
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7 Statements and macros

Statements describe algorithmic actions that can be executed. There are two different
types of control statements, conditional and repetitive. The first group defines conditional
jumps whereas the latter one defines repetition until a conditional statement is fulfilled.
Macros are used to define new functions to the MATLAB or CALFEM structure, or to
store a sequence of statements in an .m-file.

Control statements
if Conditional jump
for Initiate a loop
while Define a conditional loop

Macros
function Define a new function
script Store a sequence of statements
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if

Purpose:

Conditional jump.

Syntax:

if logical expression
...
elseif logical expression
...
else
...
end

Description:

if initiates a conditional jump. If logical expression produces the value True the
statements following if are executed. If logical expression produces the value False
the next conditional statement elseif is checked.

elseif works like if. One or more of the conditional statement elseif can be added after
the initial conditional statement if.

If else is present, the statements following else are executed if the logical expressions
in all if and elseif statements produce the value False. The if loop is closed by end to
define the loop sequence.

The following relation operators can be used

== equal

>= greater than or equal to

> greater than

<= less than or equal to

< less than

∼= not equal

Note:

This is MATLAB built-in language.
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for

Purpose:

Initiate a loop.

Syntax:

for i = start : inc : stop
...
end

Description:

for initiates a loop which terminates when i>stop. The for loop is closed by end to
define the loop sequence.

Examples:

for i = 1 : 10 i takes values from 1 to 10.
for i = 1 : 2 : 10 i equals 1, 3, 5, 7, 9.
for i = 20 : -1 : 1 i equals 20, 19 ... 2, 1.

Note:

This is MATLAB built-in language.
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while

Purpose:

Define a conditional loop.

Syntax:

while logical expression
...
end

Description:

while initiates a conditional loop which terminates when logical expression equals
False. The while loop is closed by end to define the loop sequence.

The different relation operators that can be used can be found under the if command.

Examples:

A loop continuing until a equals b

while a∼=b
...
end

Note:

This is MATLAB built-in language.
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function

Purpose:

Define a new function.

Syntax:

function[ out1 , out2 , ... ]=name( in1 , in2 , ... )

Description:

name is replaced by the name of the function. The input variables in1, in2, ... can be
scalars, vectors or matrices, and the same holds for the output variables out1, out2,
... .

Example:

To define the CALFEM function spring1e a file named spring1e.m is created. The file
contains the following statements:

function [Ke]=spring1e(k)
% Define the stiffness matrix
% for a one dimensional spring
% with spring stiffness k
Ke=[ k, -k; -k, k ]

i.e. the function spring1e is defined to return a stiffness matrix.

Note:

This is MATLAB built-in language.
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script

Purpose:

Execute a stored sequence of statements.

Syntax:

name

Description:

name is replaced by the name of the script.

Example:

The statements below are stored in a file named spring.m and executed by typing
spring in the MATLAB command window.

% Stiffness matrix for a one dimensional
% spring with stiffness k=10
k=10;
[Ke]=spring1e(k);

Note:

This is MATLAB built-in language.
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8 Graphics functions

The group of graphics functions comprises functions for element based graphics. Mesh
plots, displacements, section forces, flows, iso lines and principal stresses can be displayed.
The functions are divided into two dimensional, and general graphics functions.

Two dimensional graphics functions
plot Plot lines and points in 2D space
fill Draw filled 2D polygons
eldraw2 Draw undeformed finite element mesh
eldisp2 Draw deformed finite element mesh
eldia2 Draw section force diagram
elflux2 Plot flux vectors
eliso2 Draw isolines for nodal quantities
elprinc2 Plot principal stresses

General graphics functions
axis Axis scaling and appearance
clf Clear current figure
figure Create figures
grid Grid lines
hold Hold current graph
print Print graph or save graph to file
text Add text to current plot
title Titles for 2D and 3D plots
xlabel,
ylabel,
zlabel

Axis labels for 2D and 3D plots

8 – 1 GRAPHICS



axis

Purpose:

Plot axis scaling and appearance.

Syntax:

axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax])
axis auto
axis square
axis equal
axis off
axis on

Description:

axis([xmin xmax ymin ymax]) sets scaling for the x- and y-axes on the current 2D plot.

axis([xmin xmax ymin ymax zmin zmax]) sets the scaling for the x-, y- and z-axes on
the current 3D plot.

axis auto returns the axis scaling to its default automatic mode where, for each plot,
xmin = min(x), xmax = max(x), etc.

axis square makes the current axis box square in shape.

axis equal changes the current axis box size so that equal tick mark increments on
the x- and y-axes are equal in size. This makes plot(sin(x),cos(x)) look like a circle,
instead of an oval.

axis normal restores the current axis box to full size and removes any restrictions on
the scaling of the units. This undoes the effects of axis square and axis equal.

axis off turns off all axis labeling and tick marks.

axis on turns axis labeling and tick marks back on.

Note:

This is a MATLAB built-in function. For more information about the axis function,
type help axis.
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clf

Purpose:

Clear current figure (graph window).

Syntax:

clf

Description:

clf deletes all objects (axes) from the current figure.

Note:

This is a MATLAB built-in function. For more information about the clf function,
type help clf.
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eldraw2

Purpose:

Draw the undeformed mesh for a two dimensional structure.

Syntax:

eldraw2(Ex,Ey)
eldraw2(Ex,Ey,plotpar)
eldraw2(Ex,Ey,plotpar,elnum)

Description:

eldraw2 displays the undeformed mesh for a two dimensional structure.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr.

The variable plotpar sets plot parameters for linetype, linecolor and node marker.

plotpar = [ linetype linecolor nodemark ]

linetype = 1 solid line linecolor = 1 black
2 dashed line 2 blue
3 dotted line 3 magenta

4 red

nodemark = 1 circle
2 star
0 no mark

Default is solid black lines with circles at nodes.

Element numbers can be displayed at the center of the element if a column vector
elnum with the element numbers is supplied. This column vector can be derived from
the element topology matrix Edof,

elnum=Edof(:,1)

i.e. the first column of the topology matrix.

Limitations:

Supported elements are bar, beam, triangular three node, and quadrilateral four
node elements.
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eldisp2

Purpose:

Draw the deformed mesh for a two dimensional structure.

Syntax:

[magnfac]=eldisp2(Ex,Ey,Ed)
[magnfac]=eldisp2(Ex,Ey,Ed,plotpar)
eldisp2(Ex,Ey,Ed,plotpar,magnfac)

Description:

eldisp2 displays the deformed mesh for a two dimensional structure.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr, and the element displacements Ed formed by the function extract.

The variable plotpar sets plot parameters for linetype, linecolor and node marker.

plotpar=[ linetype linecolor nodemark ]

linetype = 1 solid line linecolor = 1 black
2 dashed line 2 blue
3 dotted line 3 magenta

4 red

nodemark = 1 circle
2 star
0 no mark

Default is dashed black lines with circles at nodes.

The magnification factor magnfac is a scalar that magnifies the element displacements
for visibility. The magnification factor is set automatically if it is omitted in the input
list.

Limitations:

Supported elements are bar, beam, triangular three node, and quadrilateral four
node elements.
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eldia2

Purpose:

Draw the section force diagrams of a two dimensional beam element.

x

y

x

y

x

y

x

y

Syntax:

[magnfac]=eldia2(ex,ey,es,eci)
eldia2(ex,ey,es,eci,magnfac)
eldia2(ex,ey,es,eci,magnfac,magnitude)

Description:

eldia2 plots a section force diagram of a two dimensional beam element in its global
position.

The input variables ex and ey are defined in beam2e and the input variables

es =


S1

S2
...

Sn

 eci =


x̄1

x̄2
...

x̄n


consist of column matrices that contain section forces and corresponding local x-
coordinates respectively. The values in es and eci are computed in beam2s. It should
be noted, however, that whereas all three section forces are computed in beam2s only
one of them shall be given as input to eldia2 by es.
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eldia2

The magnification factor magnfac is a scalar that magnifies the diagram for visibility.
magnfac is set automatically if it is omitted in the input list.

The optional input

magnitude = [ S x y ]

adds a scaled bar, with length equivalent to a reference force S, starting at coordi-
nates (x, y). If no coordinates are given the starting point will be (0,-0.5).

Limitations:

Supported elements are two dimensional beam elements.
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elflux2

Purpose:

Draw element flow arrows for two dimensional elements.

Syntax:

[magnfac]=elflux2(Ex,Ey,Es)
[magnfac]=elflux2(Ex,Ey,Es,plotpar)
elflux2(Ex,Ey,Es,plotpar,magnfac)

Description:

elflux2 displays element heat flux vectors (or corresponding quantities) for a number
of elements of the same type. The flux vectors are displayed as arrows at the element
centroids. Note that only the flux vectors are displayed. To display the element mesh,
use eldraw2.

Input variables are the coordinate matrices Ex and Ey, and the element flux matrix
Es defined in flw2ts or flw2qs.

The variable plotpar sets plot parameters for the flux arrows.

plotpar=[ arrowtype arrowcolor ]

arrowtype = 1 solid arrowcolor = 1 black
2 dashed 2 blue
3 dotted 3 magenta

4 red

Default, if plotpar is omitted, is solid black arrows.

The magnification factor magnfac is a scalar that magnifies the arrows in relation to
the element size. The magnification factor is set automatically if it is omitted in the
input list.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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eliso2

Purpose:

Display element iso lines for two dimensional elements.

Syntax:

eliso2(Ex,Ey,Ed,isov)
eliso2(Ex,Ey,Ed,isov,plotpar)

Description:

eliso2 displays element iso lines for a number of elements of the same type. Note that
only the iso lines are displayed. To display the element mesh, use eldraw2.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr, and the element nodal quantities (e.g displacement or energy potential) matrix
Ed defined in extract.

If isov is a scalar it determines the number of iso lines to be displayed. If isov is a
vector it determines the values of the iso lines to be displayed (number of iso lines
equal to length of vector isov).

isov = [ isolines]
isov = [ isovalue(1) ... isovalue(n) ]

The variable plotpar sets plot parameters for the iso lines.

plotpar=[ linetype linecolor textfcn ]

arrowtype = 1 solid arrowcolor = 1 black
2 dashed 2 blue
3 dotted 3 magenta

4 red

textfcn = 0 the iso values of the lines will not be printed
1 the iso values of the lines will be printed at the iso lines
2 the iso values of the lines will be printed where the cursor indicates

Default is solid, black lines and no iso values printed.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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elprinc2

Purpose:

Draw element principal stresses as arrows for two dimensional elements.

Syntax:

[magnfac]=elprinc2(Ex,Ey,Es)
[magnfac]=elprinc2(Ex,Ey,Es,plotpar)
elprinc2(Ex,Ey,Es,plotpar,magnfac)

Description:

elprinc2 displays element principal stresses for a number of elements of the same type.
The principal stresses are displayed as arrows at the element centroids. Note that
only the principal stresses are displayed. To display the element mesh, use eldraw2.

Input variables are the coordinate matrices Ex and Ey, and the element stresses
matrix Es defined in plants or planqs

The variable plotpar sets plot parameters for the principal stress arrows.

plotpar=[ arrowtype arrowcolor ]

arrowtype = 1 solid arrowcolor = 1 black
2 dashed 2 blue
3 dotted 3 magenta

4 red

Default, if plotpar is omitted, is solid black arrows.

The magnification factor magnfac is a scalar that magnifies the arrows in relation to
the element size. The magnification factor is set automatically if it is omitted in the
input list.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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figure

Purpose:

Create figures (graph windows).

Syntax:

figure(h)

Description:

figure(h) makes the h’th figure the current figure for subsequent plotting functions.
If figure h does not exist, a new one is created using the first available figure handle.

Note:

This is a MATLAB built-in function. For more information about the figure function,
type help figure.
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fill

Purpose:

Filled 2D polygons.

Syntax:

fill(x,y,c)
fill(X,Y,C)

Description:

fill(x,y,c) fills the 2D polygon defined by vectors x and y with the color specified by
c. The vertices of the polygon are specified by pairs of components of x and y. If
necessary, the polygon is closed by connecting the last vertex to the first.

If c is a vector of the same length as x and y, its elements are used to specify colors
at the vertices. The color within the polygon is obtained by bilinear interpolation in
the vertex colors.

If X, Y and C are matrices of the same size, fill(X,Y,C) draws one polygon per column
with interpolated colors.

Example:

The solution of a heat conduction problem results in a vector d with nodal tem-
peratures. The temperature distribution in a group of triangular 3 node (nen=3)
or quadrilateral 4 node (nen=4) elements, with topology defined by edof, can be
displayed by

[ex,ey]=coordxtr(edof,Coord,Dof,nen)

ed=extract(edof,d)

colormap(hot)

fill(ex’,ey’,ed’)

Note:

This is a MATLAB built-in function. For more information about the fill function,
type help fill.
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grid

Purpose:

Grid lines for 2D and 3D plots.

Syntax:

grid on
grid off
grid

Description:

grid on adds grid lines on the current axes.

grid off takes them off.

grid by itself, toggles the grid state.

Note:

This is a MATLAB built-in function. For more information about the grid function,
type help grid.
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hold

Purpose:

Hold the current graph.

Syntax:

hold on
hold off
hold

Description:

hold on holds the current graph.

hold off returns to the default mode where plot functions erase previous plots.

hold by itself, toggles the hold state.

Note:

This is a MATLAB built-in function. For more information about the hold function,
type help hold.
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plot

Purpose:

Linear two dimensional plot.

Syntax:

plot(x,y)
plot(x,y,’linetype’)

Description:

plot(x,y) plots vector x versus vector y. Straight lines are drawn between each pair
of values.

Various line types, plot symbols and colors may be obtained with plot(x,y,s) where s
is a 1, 2, or 3 character string made from the following characters:

– solid line . point y yellow
: dotted line o circle m magenta
-. dashdot line x x-mark c cyan
- - dashed line + plus r red

* star g green
b blue
w white
k black

Default is solid blue lines.

Example:

The statement

plot(x,y,’-’,x,y,’ro’)

plots the data twice, giving a solid blue line with red circles at the data points.

Note:

This is a MATLAB built-in function. For more information about the plot function,
type help plot.

8 – 15 GRAPHICS



print

Purpose:

Create hardcopy output of current figure window.

Syntax:

print [filename]

Description:

print with no arguments sends the contents of the current figure window to the
default printer. print filename creates a PostScript file of the current figure window
and writes it to the specified file.

Note:

This is a MATLAB built-in function. For more information about the print function,
type help print.
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text

Purpose:

Add text to current plot.

Syntax:

text(x,y,’string’)

Description:

text adds the text in the quotes to location (x,y) on the current axes, where (x,y)
is in units from the current plot. If x and y are vectors, text writes the text at all
locations given. If ’string’ is an array with the same number of rows as the length of
x and y, text marks each point with the corresponding row of the ’string’ array.

Note:

This is a MATLAB built-in function. For more information about the text function,
type help text.
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title

Purpose:

Titles for 2D and 3D plots.

Syntax:

title(’text’)

Description:

title adds the text string ’text’ at the top of the current plot.

Note:

This is a MATLAB built-in function. For more information about the title function,
type help title.
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xlabel, ylabel, zlabel

Purpose:

x-, y-, and z-axis labels for 2D and 3D plots.

Syntax:

xlabel(’text’)
ylabel(’text’)
zlabel(’text’)

Description:

xlabel adds text beside the x-axis on the current plot.

ylabel adds text beside the y-axis on the current plot.

zlabel adds text beside the z-axis on the current plot.

Note:

This is a MATLAB built-in function. For more information about the functions,
type help xlabel, help ylabel, or help zlabel.
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9 User’s Manual, examples

9.1 Introduction

This set of examples is defined with the ambition to serve as a User’s Manual. The
examples, except the introductory ones, are written as .m-files (script files) and supplied
together with the CALFEM functions.

The User’s Manual examples are separated into four groups:

MATLAB introduction

Static analysis

Dynamic analysis

Nonlinear analysis

The MATLAB introduction examples explain some basic concepts and introduce a set
of standard MATLAB functions usable in the finite element context. The static linear
examples illustrate finite element analysis of different structures loaded by stationary loads.
The dynamic linear examples illustrate some basic features in dynamics, such as modal
analysis and time stepping procedures. The examples of nonlinear analysis cover subjects
such as second order theory and buckling.

9.1 – 1 EXAMPLES





9.2 MATLAB introduction

The examples in this section illustrate basic MATLAB concepts such as handling of
workspace, variables and functions. The examples are:

MATLAB introduction

exi1 Handling matrices

exi2 Matrix and array operations

exi3 Create and handle .m-files

exi4 Display formats

exi5 Create a session .log-file

exi6 Graphic display of vectors

9.2 – 1 EXAMPLES



exi1 MATLAB introduction

Purpose:

Show how to create and handle matrices in MATLAB.

Description:

The following commands create a scalar x, two vectors u and v and two matrices A
and B.

Lines starting with the MATLAB prompt >> are command lines while the other lines
show the results from these commands.

>> x=7

x =

7

>> u=[1 2 3 4]

u =

1 2 3 4

>> v=[0:0.4:2]

v =

0 0.4000 0.8000 1.2000 1.6000 2.0000

>> A=[1 2; 3 4]

A =

1 2

3 4

>> B=[5 6; 7 8]

B =

5 6

7 8

Both brief and detailed listing of variables is possible

>> who

Your variables are:

A B u v x
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>> whos

Name Size Bytes Class

A 2x2 32 double array

B 2x2 32 double array

u 1x4 32 double array

v 1x6 48 double array

x 1x1 8 double array

Grand total is 19 elements using 152 bytes

The value of a variable is displayed by writing the variable name,

>> u

u =

1 2 3 4

and the dimension (m×n) of a variable is obtained by

>> size(u)

ans =

1 4

where the answer is temporarily stored in the vector ans.

The variable x is removed from workspace by

>> clear x

To remove all variables from workspace, clear without argument is used.

Assignment of a value to an element in a matrix is made as

>> A(2,2)=9

A =

1 2

3 9
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exi1 MATLAB introduction

To select a complete row or column colon notation is used.

>> s=A(:,1)

s =

1

3

>> t=A(2,:)

t =

3 9

A zero matrix K (4×4) is generated by

>> K=zeros(4,4)

K =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Similarly an (m×n) matrix of all ones can be generated by ones(m,n).

Expand an already defined matrix

>> H=[A;B]

H =

1 2

3 9

5 6

7 8

>> J=[A B]

J =

1 2 5 6

3 9 7 8
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Purpose:

Show some examples of basic matrix and element-by-element operations.

Description:

Consider the following matrices

a =
[

5 12 3
]

b =
[

1 0 4
]

A =

[
1 6 3
2 8 4

]
B =

[
2 5 4
7 2 0

]

The transpose of a matrix is generated by

>> A’

ans =

1 2

6 8

3 4

>> a’

ans =

5

12

3

Addition and subtraction of matrices

>> A+B

ans =

3 11 7

9 10 4

>> A-B

ans =

-1 1 -1

-5 6 4

Note that if the result of an operation is not assigned to a specific variable, the
answer is temporarily stored in the variable ans.
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exi2 MATLAB introduction

Multiplication of matrices

>> a*b’

ans =

17

>> a’*b

ans =

5 0 20

12 0 48

3 0 12

>> A’*B

ans =

16 9 4

68 46 24

34 23 12

>> C=B*A’

C =

44 60

19 30

To perform arithmetic operations, matrix dimensions must agree

>> D=A*B

??? Error using ==> *

Inner matrix dimensions must agree.

The inverse of a square matrix

>> inv(C)

ans =

0.1667 -0.3333

-0.1056 0.2444
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The determinant of a square matrix

>> det(C)

ans =

180

An array or element-by-element arithmetic operation is denoted by a period (.) pre-
ceding an operator. Examples are element-by-element multiplication (.*), division
(./), and powers (.^).

>> a.*b

ans =

5 0 12

>> A.*B

ans =

2 30 12

14 16 0

Matrices in element-by-element operations must obviously have the same dimensions.

Mathematical functions applied to arrays are also evaluated element-by-element.

>> sin([0 1 2 3 4]*pi/2)

ans =

0 1 0 -1 0
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exi3 MATLAB introduction

Purpose:

Show how to handle script files and function files.

Description:

When starting a MATLAB session the default working directory is according to
initial settings, for example C:\USER. A new working directory can be chosen by
typing for example

>> cd A:

which makes the root directory in drive A the working directory.

Files containing MATLAB and/or CALFEM statements are characterized by the
suffix .m. For example the file bar2e.m contains statements to evaluate the element
stiffness matrix for a two dimensional bar element. An .m-file is allowed to include
references to other .m-files, and also to call itself recursively.

Two types of .m-files can be used, script files and function files. Script files collect a
sequence of statements under one command name. Function files allow new functions
with input and/or output variables to be defined. Both script files and function files
are ordinary ASCII text files and can therefore be created in an arbitrary editor.
In the MATLAB environment an .m-file editor can be activated from the pull down
menu on top of the MATLAB window.

An example of a script file is given below. The following sequence of statements is
typed in the .m-file editor, and saved as test.m.

% ----- Script file test.m -----

A=[0 4;2 8]

B=[3 9;5 7]

C=A*B

% ------------ end -------------

A line starting with an % is regarded as a comment line.

The statements are executed by writing the file name (without the suffix .m) in the
command window

>> test

A =

0 4

2 8
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B =

3 9

5 7

C =

20 28

46 74

The second type of .m-files is the function file. The first line of these files contains
the word function. The example below is a function that computes the second and
third power of a scalar.

function [b,c]=func1(a)

% ----- function file ’func1.m’ -----

b=a*a;

c=a*a*a;

% ------------- end -----------------

The semi-colon prohibits the echo display of the variables on the screen.

The file can be created using an ordinary editor, and it must be saved as func1.m i.e.
the file name without extension must be the same as the function name.

The second and third power of 2 are calculated by typing

>> [b,c]=func1(2)

producing

b =

4

c =

8

See also function and script in Section 7.
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Purpose:

Show different display formats.

Description:

Consider the following matrix operation

>> A=[0 4;2 8];

>> B=[3 9;5 7];

>> C=A*B/2537

C =

0.0079 0.0110

0.0181 0.0292

The result from the computation of C above is shown in the default format, displaying
four significant decimal digits.

Other formats can be defined by the command format

>> format long

>> C

C =

0.00788332676389 0.01103665746945

0.01813165155696 0.02916830902641

>> format short e

>> C

C =

7.8833e-03 1.1037e-02

1.8132e-02 2.9168e-02

>> format long e

>> C

C =

7.883326763894364e-03 1.103665746945211e-02

1.813165155695703e-02 2.916830902640915e-02
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Purpose:

How to make a command window session .log-file.

Description:

The diary and echo commands are useful for presentation purposes since the complete
set of statements can be saved together with some selected results.

The command

>> diary filename

saves all subsequent terminal input and resulting output in the file named filename
on the default device. The file is closed using

>> diary off

Consider the script file test.m.

% ----- Script file test.m -----

diary testlog

echo on

A=[0 4;2 8];

B=[3 9;5 7];

C=A*B/2537

echo off

diary off

% ------------- end ------------

Normally, the statements in an .m-file do not display during execution. The com-
mands echo on and echo off allow the statements to be viewed as they execute.
Execution of test.m yields

>>test

A=[0 4;2 8];

B=[3 9;5 7];

C=A*B/2537

C =

0.0079 0.0110

0.0181 0.0292

in the command window and on the file testlog as well.
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exi6 MATLAB introduction

Purpose:

How to display vectors and handle the graphics window.

Description:

The contents of a vector versus the vector index or a vector versus another vector
can be displayed in the graphics window. Consider the vectors

x =
[

1 2 5
]

y =
[

5 22 16
]

The function

>> plot(y)

plots the contents of the vector y versus vector index and

>> plot(x,y)

plots the contents of the vector y versus the vector x.

The commands

title(’text’ )
xlabel(’xlabel’ )
ylabel(’ylabel’ )

write text as a title of the current plot, and xlabel and ylabel as labels of the coordinate
axis.

Grid lines are added with

grid

and

clf

clears the current figure.
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9.3 Static analysis

This section illustrates some linear static finite element calculations. The examples deal
with structural problems as well as field problems such as heat conduction.

Static analysis

exs1 Linear spring system

exs2 One-dimensional heat flow

exs3 Simply supported beam

exs4 Plane truss

exs5 Plane frame

exs6 Geometry based frame analysis

exs7 Two dimensional diffusion

The introductory example exs1 illustrates the basic steps in the finite element method for
a simple structure of one-dimensional linear springs. The linear spring or analogy element
is also used in example exs2 to solve a problem of heat conduction through a wall. A
simply supported beam is analysed in example exs3. Element forces and reactions at the
supports are calculated. A two dimensional plane truss is analysed in example exs4 and
a two dimensional plane frame is analysed in example exs5. A frame built up from both
beams and bars is analysed in example exs6. The finite element model is defined from the
geometry. Graphics facilities are also explained in example exs5 and exs6.

Note: The examples listed above are supplied as .m-files on the CALFEM diskette under
the directory examples. The example files are named according to the table.
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exs1 Static analysis

Purpose:

Show the basic steps in a finite element calculation.

Description:

The general procedure in linear finite element calculations is carried out for a simple
structure. The steps are

• define the model

• generate element matrices

• assemble element matrices into the global system of equations

• solve the global system of equations

• evaluate element forces

Consider the system of three linear elastic springs, and the corresponding finite
element model. The system of springs is fixed in its ends and loaded by a single load
F .

●●●
3

3

2

1

2
1

k

2k

2k

F

The computation is initialized by defining the topology matrix Edof, containing ele-
ment numbers and global element degrees of freedom,

>> Edof=[1 1 2;

2 2 3;

3 2 3];

the global stiffness matrix K (3×3) of zeros,

>> K=zeros(3,3)

K =

0 0 0

0 0 0

0 0 0
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and the load vector f (3×1) with the load F = 100 in position 2.

>> f=zeros(3,1); f(2)=100

f =

0

100

0

Element stiffness matrices are generated by the function spring1e. The element prop-
erty ep for the springs contains the spring stiffnesses k and 2k respectively, where
k = 1500.

>> k=1500; ep1=k; ep2=2*k;

>> Ke1=spring1e(ep1)

Ke1 =

1500 -1500

-1500 1500

>> Ke2=spring1e(ep2)

Ke2 =

3000 -3000

-3000 3000

The element stiffness matrices are assembled into the global stiffness matrix K ac-
cording to the topology.

>> K=assem(Edof(1,:),K,Ke2)

K =

3000 -3000 0

-3000 3000 0

0 0 0

>> K=assem(Edof(2,:),K,Ke1)

K =

3000 -3000 0

-3000 4500 -1500

0 -1500 1500
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>> K=assem(Edof(3,:),K,Ke2)

K =

3000 -3000 0

-3000 7500 -4500

0 -4500 4500

The global system of equations is solved considering the boundary conditions given
in bc.

>> bc= [1 0; 3 0];

>> a=solveq(K,f,bc)

a =

0

0.0133

0

Element forces are evaluated from the element displacements. These are obtained
from the global displacements a using the function extract.

>> ed1=extract(Edof(1,:),a)

ed1 =

0 0.0133

>> ed2=extract(Edof(2,:),a)

ed2 =

0.0133 0

>> ed3=extract(Edof(3,:),a)

ed3 =

0.0133 0
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The spring forces are evaluated using the function spring1s.

>> es1=spring1s(ep2,ed1)

es1 =

40

>> es2=spring1s(ep1,ed2)

es2 =

-20

>> es3=spring1s(ep2,ed3)

es3 =

-40
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exs2 Static analysis

Purpose:

Analysis of one-dimensional heat flow.

Description:

Consider a wall built up of concrete and thermal insulation. The outdoor temperature
is −17◦C and the temperature inside is 20◦C

● ● ● ●●●

T1 T2 T3 T4 T5 T6

1 2 3 4 5

0.100 m0.070 m

Ti = 20 oC

T
0 

=
 -

1
7

 o
C

surface thermal resistance, m = 0.18 m2 K/W
concrete, λ = 1.7 W/mK
thermal insulation, λ = 0.04 W/mK
concrete, λ = 1.7 W/mK
surface thermal resistance, m = 0.07 m2 K/W

0.100 m

The wall is subdivided into five elements and the one-dimensional spring (analogy)
element spring1e is used. Equivalent spring stiffnesses are ki = λA/L for thermal
conductivity and ki = A/m for thermal surface resistance. Corresponding spring
stiffnesses per m2 of the wall are:

k1 = 1/0.07 = 14.2857 W/◦C
k2 = 1.7/0.070 = 24.2857 W/◦C
k3 = 0.040/0.100 = 0.4000 W/◦C
k4 = 1.7/0.100 = 17.0000 W/◦C
k5 = 1/0.18 = 5.5555 W/◦C

A global stiffness matrix K and a load vector f are defined. The element matrices Ke
are computed using spring1e, and the function assem assembles the global stiffness
matrix.

The system of equations is solved using solveq with considerations to the boundary
conditions in bc. The prescribed temperatures are T1 = −17◦C and T6 = 20◦C.
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>> Edof=[1 1 2

2 2 3;

3 3 4;

4 4 5;

5 5 6];

>> K=zeros(6);

>> f=zeros(6,1);

>> ep1=[ 1/0.07 ]; ep2=[ 1.7/0.07 ];

>> ep3=[ 0.040/0.10 ]; ep4=[ 1.7/0.10 ];

>> ep5=[ 1/0.18 ];

>> Ke1=spring1e(ep1); Ke2=spring1e(ep2);

>> Ke3=spring1e(ep3); Ke4=spring1e(ep4);

>> Ke5=spring1e(ep5);

>> K=assem(Edof(1,:),K,Ke1); K=assem(Edof(2,:),K,Ke2);

>> K=assem(Edof(3,:),K,Ke3); K=assem(Edof(4,:),K,Ke4);

>> K=assem(Edof(5,:),K,Ke5);

>> bc=[1 -17; 6 20];

>> T=solveq(K,f,bc)

T =

-17.0000

-16.0912

-15.5567

16.8995

17.6632

20.0000

The temperature values in the node points are given in the vector T.

After solving the system of equations, the heat flow through the wall is computed
using extract and spring1s.

>> ed1=extract(Edof(1,:),T);

>> ed2=extract(Edof(2,:),T);

>> ed3=extract(Edof(3,:),T);

>> ed4=extract(Edof(4,:),T);

>> ed5=extract(Edof(5,:),T);
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>> q1=spring1s(ep1,ed1)

q1 =

12.9825

>> q2=spring1s(ep2,ed2)

q2 =

12.9825

>> q3=spring1s(ep3,ed3)

q3 =

12.9825

>> q4=spring1s(ep4,ed4)

q4 =

12.9825

>> q5=spring1s(ep5,ed5)

q5 =

12.9825

The heat flow through the wall, equal for all elements, is q = 13.0 W/m2.

EXAMPLES 9.3 – 8



Static analysis exs3

Purpose:

Analysis of a simply supported beam.

Description:

Consider the simply supported beam loaded by a single load f = 10000 N, applied
at a point 1 meter from the left support. The corresponding finite element mesh is
also shown. The following data apply to the beam

Young’s modulus E = 2.10e11 N/m2

Cross section area A = 45.3e−4 m2

Moment of inertia I = 2510e−8 m4

9 m

10

11

12

1 2 3

f = 10 kN

7

8

9
4

5

6
1

2

3

The element topology is defined by the topology matrix

>> Edof=[1 1 2 3 4 5 6

2 4 5 6 7 8 9

3 7 8 9 10 11 12];

The system matrices, i.e. the stiffness matrix K and the load vector f, are defined by

>> K=zeros(12); f=zeros(12,1); f(5)=-10000;

The element property vector ep, the element coordinate vectors ex and ey, and the
element stiffness matrix Ke, are generated. Note that the same coordinate vectors
are applicable for all elements because they are identical.
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>> E=2.1e11; A=45.3e-4; I=2510e-8; ep=[E A I];

>> ex=[0 3]; ey=[0 0];

>> Ke=beam2e(ex,ey,ep)

Ke =

1.0e+08 *

3.1710 0 0 -3.1710 0 0

0 0.0234 0.0351 0 -0.0234 0.0351

0 0.0351 0.0703 0 -0.0351 0.0351

-3.1710 0 0 3.1710 0 0

0 -0.0234 -0.0351 0 0.0234 -0.0351

0 0.0351 0.0351 0 -0.0351 0.0703

Based on the topology information, the global stiffness matrix can be generated by
assembling the element stiffness matrices

>> K=assem(Edof,K,Ke);

Finally, the solution can be calculated by defining the boundary conditions in bc and
solving the system of equations. Displacements a and reaction forces Q are computed
by the function solveq.

>> bc=[1 0; 2 0; 11 0]; [a,Q]=solveq(K,f,bc);

The section forces es are calculated from element displacements Ed

>> Ed=extract(Edof,a);

>> es1=beam2s(ex,ey,ep,Ed(1,:));

>> es2=beam2s(ex,ey,ep,Ed(2,:));

>> es3=beam2s(ex,ey,ep,Ed(3,:));
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Results

a = Q =

0 1.0e+03 *

0

-0.0095 0

0 6.6667

-0.0228 -0.0000

-0.0038 0

0 -0.0000

-0.0199 -0.0000

0.0047 0

0 -0.0000

0 -0.0000

0.0076 0

3.3333

0.0000

es1 =

1.0e+04 *

0 -0.6667 0.0000

0 -0.6667 2.0000

es2 =

1.0e+04 *

0 0.3333 2.0000

0 0.3333 1.0000

es3 =

1.0e+04 *

0 0.3333 1.0000

0 0.3333 0.0000
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Purpose:

Analysis of a plane truss.

Description:

Consider a plane truss, loaded by a single force P = 0.5 MN.

2 m 2 m

2 m

P = 0.5 MN

30o

The corresponding finite element model consists of ten elements and twelve degrees
of freedom.
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A = 25.0e−4 m2

E = 2.10e5 MPa

The topology is defined by the matrix

>> Edof=[1 1 2 5 6;

2 3 4 7 8;

3 5 6 9 10;

4 7 8 11 12;

5 7 8 5 6;

6 11 12 9 10;

7 3 4 5 6;

8 7 8 9 10;

9 1 2 7 8;

10 5 6 11 12];

EXAMPLES 9.3 – 12



Static analysis exs4

A global stiffness matrix K and a load vector f are defined. The load P is divided
into x and y components and inserted in the load vector f.

>> K=zeros(12);

>> f=zeros(12,1); f(11)=0.5e6*sin(pi/6); f(12)=-0.5e6*cos(pi/6);

The element matrices Ke are computed by the function bar2e. These matrices are
then assembled in the global stiffness matrix using the function assem.

>> A=25.0e-4; E=2.1e11; ep=[E A];

>> ex1=[0 2]; ex2=[0 2]; ex3=[2 4]; ex4=[2 4]; ex5=[2 2];

>> ex6=[4 4]; ex7=[0 2]; ex8=[2 4]; ex9=[0 2]; ex10=[2 4];

>> ey1=[2 2]; ey2=[0 0]; ey3=[2 2]; ey4=[0 0]; ey5=[0 2];

>> ey6=[0 2]; ey7=[0 2]; ey8=[0 2]; ey9=[2 0]; ey10=[2 0];

>> Ke1=bar2e(ex1,ey1,ep); Ke2=bar2e(ex2,ey2,ep);

>> Ke3=bar2e(ex3,ey3,ep); Ke4=bar2e(ex4,ey4,ep);

>> Ke5=bar2e(ex5,ey5,ep); Ke6=bar2e(ex6,ey6,ep);

>> Ke7=bar2e(ex7,ey7,ep); Ke8=bar2e(ex8,ey8,ep);

>> Ke9=bar2e(ex9,ey9,ep); Ke10=bar2e(ex10,ey10,ep);

>> K=assem(Edof(1,:),K,Ke1); K=assem(Edof(2,:),K,Ke2);

>> K=assem(Edof(3,:),K,Ke3); K=assem(Edof(4,:),K,Ke4);

>> K=assem(Edof(5,:),K,Ke5); K=assem(Edof(6,:),K,Ke6);

>> K=assem(Edof(7,:),K,Ke7); K=assem(Edof(8,:),K,Ke8);

>> K=assem(Edof(9,:),K,Ke9); K=assem(Edof(10,:),K,Ke10);

The system of equations is solved considering the boundary conditions in bc.

>> bc=[1 0;2 0;3 0;4 0];

>> a=solveq(K,f,bc)

a =

0

0

0

0

0.0024

-0.0045

-0.0016

-0.0042

0.0030

-0.0107

-0.0017

-0.0113
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The displacement at the point of loading is −1.7 · 10−3 m in the x-direction and
−11.3 · 10−3 m in the y-direction.

Normal forces are evaluated from element displacements. These are obtained from
the global displacements a using the function extract. The normal forces are evaluated
using the function bar2s.

>> ed1=extract(Edof(1,:),a); ed2=extract(Edof(2,:),a);

>> ed3=extract(Edof(3,:),a); ed4=extract(Edof(4,:),a);

>> ed5=extract(Edof(5,:),a); ed6=extract(Edof(6,:),a);

>> ed7=extract(Edof(7,:),a); ed8=extract(Edof(8,:),a);

>> ed9=extract(Edof(9,:),a); ed10=extract(Edof(10,:),a);

>> N1=bar2s(ex1,ey1,ep,ed1)

N1 =

6.2594e+05

>> N2=bar2s(ex2,ey2,ep,ed2)

N2 =

-4.2310e+05

>> N3=bar2s(ex3,ey3,ep,ed3)

N3 =

1.7064e+05

>> N4=bar2s(ex4,ey4,ep,ed4)

N4 =

-1.2373e+04

>> N5=bar2s(ex5,ey5,ep,ed5)

N5 =

-6.9447e+04

>> N6=bar2s(ex6,ey6,ep,ed6)

N6 =

1.7064e+05

>> N7=bar2s(ex7,ey7,ep,ed7)

N7 =

-2.7284e+05
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>> N8=bar2s(ex8,ey8,ep,ed8)

N8 =

-2.4132e+05

>> N9=bar2s(ex9,ey9,ep,ed9)

N9 =

3.3953e+05

>> N10=bar2s(ex10,ey10,ep,ed10)

N10 =

3.7105e+05

The largest normal force N = 0.62 MN is obtained in element 1 and is equivalent to
a normal stress σ = 250 MPa.
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Purpose:

Analysis of a plane frame.

Description:

A frame consists of one horizontal and two vertical beams according to the figure
below.

A1, I1, E

P
q0

4.0 m

6.0 m

A2, I2, E

A1, I1, E

A1 = 45.3e−4 m2

I1 = 2510e−8 m4

A2 = 142.8e−4 m2

I2 = 33090e−8 m4

E = 2.10e5 MPa
P = 0.001 MN
q0 = 0.075 MN/m

The corresponding finite element model consists of three beam elements and twelve
degrees of freedom.
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A topology matrix Edof, a global stiffness matrix K and load vector f are defined. The
element matrices Ke and fe are computed by the function beam2e. These matrices
are then assembled in the global matrices using the function assem.

>> Edof=[1 1 2 3 4 5 6;

2 10 11 12 7 8 9;

3 4 5 6 7 8 9];

>> K=zeros(12); f=zeros(12,1); f(4)=1000;

>> A1=45.3e-4; A2=142.8e-4;
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>> I1=2510e-8; I2=33090e-8;

>> E=2.1e11;

>> ep1=[E A1 I1]; ep3=[E A2 I2];

>> ex1=[0 0]; ex2=[6 6]; ex3=[0 6];

>> ey1=[0 4]; ey2=[0 4]; ey3=[4 4];

>> eq1=[0 0];

>> eq2=[0 0];

>> eq3=[0 -75000];

>> Ke1=beam2e(ex1,ey1,ep1);

>> Ke2=beam2e(ex2,ey2,ep1);

>> [Ke3,fe3]=beam2e(ex3,ey3,ep3,eq3);

>> K=assem(Edof(1,:),K,Ke1);

>> K=assem(Edof(2,:),K,Ke2);

>> [K,f]=assem(Edof(3,:),K,Ke3,f,fe3);

The system of equations are solved considering the boundary conditions in bc.

>> bc=[1 0;2 0;3 0;10 0;11 0;12 0];

>> a=solveq(K,f,bc)

a =

0

0

0

0.0006

-0.0009

-0.0079

0.0005

-0.0009

0.0079

0

0

0
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The element displacements are obtained from the function extract, and the function
beam2s computes the section forces.

>> Ed=extract(Edof,a);

>> es1=beam2s(ex1,ey1,ep1,Ed(1,:),eq1,20)

es1 =

1.0e+05 *

-2.2467 0.1513 0.1981

-2.2467 0.1513 0.1662

: : :

-2.2467 0.1513 -0.4070

>> es2=beam2s(ex2,ey2,ep1,Ed(2,:),eq2,20)

es2 =

1.0e+05 *

-2.2533 -0.1613 -0.2185

-2.2533 -0.1613 -0.1845

: : :

-2.2533 -0.1613 0.4266

>> es3=beam2s(ex3,ey3,ep3,Ed(3,:),eq3,20)

es3 =

1.0e+05 *

-0.1613 -2.2467 -0.4070

-0.1613 -2.0099 0.2651

: : :

-0.1613 2.2533 -0.4266
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Section force diagrams are displayed using the function eldia2.

>> figure(1)

>> magnfac=eldia2(ex1,ey1,es1(:,1),eci1);

>> magnitude=[3e5 0.5 0];

>> eldia2(ex1,ey1,es1(:,1),eci1,magnfac);

>> eldia2(ex2,ey2,es2(:,1),eci2,magnfac);

>> eldia2(ex3,ey3,es3(:,1),eci3,magnfac,magnitude);

>> axis([-1.5 7 -0.5 5.5])

>> figure(2)

>> magnfac=eldia2(ex3,ey3,es3(:,2),eci3);

>> magnitude=[3e5 0.5 0];

>> eldia2(ex1,ey1,es1(:,2),eci1,magnfac);

>> eldia2(ex2,ey2,es2(:,2),eci2,magnfac);

>> eldia2(ex3,ey3,es3(:,2),eci3,magnfac,magnitude);

>> axis([-1.5 7 -0.5 5.5])

>> figure(3)

>> magnfac=eldia2(ex3,ey3,es3(:,3),eci3);

>> magnitude=[3e5 0.5 0];

>> eldia2(ex1,ey1,es1(:,3),eci1,magnfac);

>> eldia2(ex2,ey2,es2(:,3),eci2,magnfac);

>> eldia2(ex3,ey3,es3(:,3),eci3,magnfac,magnitude);

>> axis([-1.5 7 -0.5 5.5])
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Purpose:

Set up a frame, consisting of both beams and bars, and illustrate the calculations by
use of graphics functions.

Description:

A frame consists of horizontal and vertical beams, and is stabilized with diagonal
bars.
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The frame with its coordinates and loading is shown in the left figure, and the finite
element model in the right. In the following, the statements for analysing the frame
are given as an .m-file.

The matrices of the global system i.e. the stiffness matrix K, the load vector f, the
coordinate matrix Coord, and the corresponding degrees of freedom matrix Dof are
defined by

% ----- System matrices -----

K=zeros(18,18);

f=zeros(18,1); f(13)=1;

Coord=[0 0;

1 0;

0 1;

1 1;

0 2;

1 2];
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Dof=[1 2 3;

4 5 6;

7 8 9;

10 11 12;

13 14 15;

16 17 18];

The material properties, the topology, and the element coordinates for the beams
and bars respectively, are defined by

% ----- Element properties, topology and coordinates -----

ep1=[1 1 1];

Edof1=[1 1 2 3 7 8 9;

2 7 8 9 13 14 15;

3 4 5 6 10 11 12;

4 10 11 12 16 17 18;

5 7 8 9 10 11 12;

6 13 14 15 16 17 18];

[Ex1,Ey1]=coordxtr(Edof1,Coord,Dof,2);

ep2=[1 1];

Edof2=[7 1 2 10 11;

8 7 8 16 17;

9 7 8 4 5;

10 13 14 10 11];

[Ex2,Ey2]=coordxtr(Edof2,Coord,Dof,2);

To check the model, the finite element mesh can be drawn.

eldraw2(Ex1,Ey1,[1 3 1]);

eldraw2(Ex2,Ey2,[1 2 1]);

The element stiffness matrices are generated and assembled in two loops, one for the
beams and one for the bars. The element stiffness functions beam2e and bar2e use
the element coordinate matrices ex and ey. These matrices are extracted from the
global coordinates Coord by the function coordxtr above.
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% ----- Create and assemble element matrices -----

for i=1:6

Ke=beam2e(Ex1(i,:),Ey1(i,:),ep1);

K=assem(Edof1(i,:),K,Ke);

end

for i=1:4

Ke=bar2e(Ex2(i,:),Ey2(i,:),ep2);

K=assem(Edof2(i,:),K,Ke);

end

The global system of equations is solved considering the boundary conditions in bc,

% ----- Solve equation system -----

bc= [1 0; 2 0; 3 0; 4 0; 5 0; 6 0];

[a,Q]=solveq(K,f,bc);

and the deformed frame is displayed by the function eldisp2, where the displacements
are scaled by the variable magnfac.

Ed1=extract(Edof1,a);

Ed2=extract(Edof2,a);

[magnfac]=eldisp2(Ex1,Ey1,Ed1);

eldisp2(Ex2,Ey2,Ed2,[2 1 1],magnfac);

grid
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Purpose:

Analysis of two dimensional diffusion.

Description:

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

1 2

3 4

5 6

7 8

x

y

c = 0

c = 0

c = 10-3 kg/m3

c = 0

0.1 m

0.1 m

Description:

Consider a filter paper of square shape. Three sides are in contact with pure water
and the fourth side is in contact with a solution of concentration c = kg/m3. The
length of each side is 0.100 m. Using symmetry, only half of the paper has to be
analyzed. The paper and the corresponding finite element mesh are shown. The
following boundary conditions are applied

c(0, y) = c(x, 0) = c(0.1, y) = 0
c(x, 0.1) = 10−3

The element topology is defined by the topology matrix

>> Edof=[1 1 2 5 4

2 2 3 6 5

3 4 5 8 7

4 5 6 9 8

5 7 8 11 10

6 8 9 12 11

7 10 11 14 13

8 11 12 15 14];
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The system matrices, i.e. the stiffness matrix K and the load vector f, are defined by

>> K=zeros(15); f=zeros(15,1);

Because of the same geometry, orientation, and constitutive matrix for all elements,
only one element stiffness matrix Ke has to be computed. This is done by the function
flw2qe.

>> ep=1; D=[1 0; 0 1];

>> ex=[0 0.025 0.025 0]; ey=[0 0 0.025 0.025];

>> Ke=flw2qe(ex,ey,ep,D)

>> Ke =

0.7500 -0.2500 -0.2500 -0.2500

-0.2500 0.7500 -0.2500 -0.2500

-0.2500 -0.2500 0.7500 -0.2500

-0.2500 -0.2500 -0.2500 0.7500

Based on the topology information, the global stiffness matrix is generated by as-
sembling this element stiffness matrix Ke in the global stiffness matrix K

>> K=assem(Edof,K,Ke);

Finally, the solution is calculated by defining the boundary conditions bc and solving
the system of equations. The boundary condition at dof 13 is set to 0.5×103 as an
average of the concentrations at the neighbouring boundaries. Displacements a and
reaction forces Q are computed by the function solveq.

>> bc=[1 0;2 0;3 0;4 0;7 0;10 0;13 0.5e-3;14 1e-3;15 1e-3];

>> [a,Q]=solveq(K,f,bc);

The element flows q are calculated from element concentration Ed

>> Ed=extract(Edof,a);

>> for i=1:8

>> es=flw2qs(ex,ey,ep,D,Ed(i,:));

>> end
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Results

a= Q=

1.0e-03 * 1.0e+03 *

0 -0.0165

0 -0.0565

0 -0.0399

0 -0.0777

0.0662 0.0000

0.0935 0

0 -0.2143

0.1786 0.0000

0.2500 0.0000

0 -0.6366

0.4338 0.0000

0.5494 -0.0000

0.5000 0.0165

1.0000 0.7707

1.0000 0.2542

Es =

-0.0013 -0.0013

-0.0005 -0.0032

-0.0049 -0.0022

-0.0020 -0.0054

-0.0122 -0.0051

-0.0037 -0.0111

-0.0187 -0.0213

-0.0023 -0.0203
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The following .m-file shows an alternative set of commands to perform the diffusion
analysis of exs7. By use of global coordinates, an FE-mesh is generated. Also plots
with flux-vectors and contour lines are created.

% ----- System matrices -----

K=zeros(15); f=zeros(15,1);

Coord=[0 0 ; 0.025 0 ; 0.05 0

0 0.025; 0.025 0.025; 0.05 0.025

0 0.05 ; 0.025 0.05 ; 0.05 0.05

0 0.075; 0.025 0.075; 0.05 0.075

0 0.1 ; 0.025 0.1 ; 0.05 0.1 ];

Dof=[1; 2; 3

4; 5; 6

7; 8; 9

10;11;12

13;14;15];

% ----- Element properties, topology and coordinates -----

ep=1; D=[1 0;0 1];

Edof=[1 1 2 5 4

2 2 3 6 5

3 4 5 8 7

4 5 6 9 8

5 7 8 11 10

6 8 9 12 11

7 10 11 14 13

8 11 12 15 14];

[Ex,Ey]=coordxtr(Edof,Coord,Dof,4);

% ----- Generate FE-mesh -----

eldraw2(Ex,Ey,[1 3 0],Edof(:,1));

pause; clf;

% ----- Create and assemble element matrices -----

for i=1:8

Ke=flw2qe(Ex(i,:),Ey(i,:),ep,D);

K=assem(Edof(i,:),K,Ke);

end;

% ----- Solve equation system -----

bc=[1 0;2 0;3 0;4 0;7 0;10 0;13 0.5e-3;14 1e-3;15 1e-3];
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[a,Q]=solveq(K,f,bc)

% ----- Compute element flux vectors -----

Ed=extract(Edof,a);

for i=1:8

Es(i,:)=flw2qs(Ex(i,:),Ey(i,:),ep,D,Ed(i,:))

end

% ----- Draw flux vectors and contour lines -----

eldraw2(Ex,Ey); elflux2(Ex,Ey,Es); pause; clf;

eldraw2(Ex,Ey); eliso2(Ex,Ey,Ed,5);
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Two comments concerning the contour lines:

In the upper left corner, the contour lines should physically have met at the corner
point. However, the drawing of the contour lines for the planqe element follows the
numerical approximation along the element boundaries, i.e. a linear variation. A
finer element mesh will bring the contour lines closer to the corner point.

Along the symmetry line, the contour lines should physically be perpendicular to the
boundary. This will also be improved with a finer element mesh.

With the MATLAB functions colormap and fill a color plot of the concentrations can
be obtained.

colormap(’jet’)

fill(Ex’,Ey’,Ed’)

axis equal
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This section concerns linear dynamic finite element calculations. The examples illustrate
some basic features in dynamics such as modal analysis and time stepping procedures.

Dynamic analysis

exd1 Modal analysis of frame

exd2 Transient analysis

exd3 Reduced system transient analysis

exd4 Time varying boundary condition

Note: The examples listed above are supplied as .m-files on the CALFEM diskette under
the directory examples. The example files are named according to the table.
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Purpose:

Set up the finite element model and perform eigenvalue analysis for a simple frame
structure.

Description:

Consider the two dimensional frame shown below. A vertical beam is fixed at its
lower end, and connected to a horizontal beam at its upper end. The horizontal
beam is simply supported at the right end. The length of the vertical beam is 3 m
and of the horizontal beam 2 m. The following data apply to the beams

vertical beam horizontal beam
Young’s modulus (N/m2) 3e10 3e10
Cross section area (m2) 0.1030e-2 0.0764e-2
Moment of inertia (m4) 0.171e-5 0.0801e-5
Density (kg/m3) 2500 2500
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a) b)

The structure is divided into 4 elements. The numbering of elements and degrees-of-
freedom are apparent from the figure. The following .m-file defines the finite element
model.

% --- material data ------------------------------------------

E=3e10; rho=2500;

Av=0.1030e-2; Iv=0.0171e-4; % IPE100

Ah=0.0764e-2; Ih=0.00801e-4; % IPE80

epv=[E Av Iv rho*Av]; eph=[E Ah Ih rho*Ah];
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% --- topology ----------------------------------------------

Edof=[1 1 2 3 4 5 6

2 4 5 6 7 8 9

3 7 8 9 10 11 12

4 10 11 12 13 14 15];

% --- list of coordinates -----------------------------------

Coord=[0 0; 0 1.5; 0 3; 1 3; 2 3];

% --- list of degrees-of-freedom ----------------------------

Dof=[1 2 3; 4 5 6; 7 8 9; 10 11 12; 13 14 15];

% --- generate element matrices, assemble in global matrices -

K=zeros(15); M=zeros(15);

[Ex,Ey]=coordxtr(Edof,Coord,Dof,2);

for i=1:2

[k,m,c]=beam2d(Ex(i,:),Ey(i,:),epv);

K=assem(Edof(i,:),K,k); M=assem(Edof(i,:),M,m);

end

for i=3:4

[k,m,c]=beam2d(Ex(i,:),Ey(i,:),eph);

K=assem(Edof(i,:),K,k); M=assem(Edof(i,:),M,m);

end

The finite element mesh is plotted, using the following commands

clf;

eldraw2(Ex,Ey,[1 2 2],Edof);

grid; title(’2D Frame Structure’);

pause;
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A standard procedure in dynamic analysis is eigenvalue analysis. This is accom-
plished by the following set of commands.

b=[1 2 3 14]’;
[La,Egv]=eigen(K,M,b);
Freq=sqrt(La)/(2*pi);

Note that the boundary condition matrix, b, only lists the degrees-of-freedom that
are zero. The results of these commands are the eigenvalues, stored in La, and the
eigenvectors, stored in Egv. The corresponding frequencies in Hz are calculated and
stored in the column matrix Freq.

Freq = [6.9826 43.0756 66.5772 162.7453 230.2709 295.6136

426.2271 697.7628 877.2765 955.9809 1751.3]T

The eigenvectors can be plotted by entering the commands below.

figure(1), clf, grid, title(’The first eigenmode’),

eldraw2(Ex,Ey,[2 3 1]);

Edb=extract(Edof,Egv(:,1)); eldisp2(Ex,Ey,Edb,[1 2 2]);

FreqText=num2str(Freq(1)); text(.5,1.75,FreqText);

pause;
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An attractive way of displaying the eigenmodes is shown in the figure below. The
result is accomplished by translating the different eigenmodes in the x-direction, see
the Ext-matrix defined below, and in the y-direction, see the Eyt-matrix.

clf, axis(’equal’), hold on, axis off

magnfac=0.5;

title(’The first eight eigenmodes (Hz)’ )

for i=1:4;

Ext=Ex+(i-1)*3; eldraw2(Ext,Ey,[2 3 1]);

Edb=extract(Edof,Egv(:,i));

eldisp2(Ext,Ey,Edb,[1 2 2],magnfac);

FreqText=num2str(Freq(i)); text(3*(i-1)+.5,1.5,FreqText);

end;

Eyt=Ey-4;

for i=5:8;

Ext=Ex+(i-5)*3; eldraw2(Ext,Eyt,[2 3 1]);

Edb=extract(Edof,Egv(:,i));

eldisp2(Ext,Eyt,Edb,[1 2 2],magnfac);

FreqText=num2str(Freq(i)); text(3*(i-5)+.5,-2.5,FreqText);

end

The first eight eigenmodes (Hz)

6.983 43.08 66.58 162.7

230.3 295.6 426.2 697.8

The first eight eigenmodes. Frequencies are given in Hz.
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Purpose:

The frame structure defined in exd1 is exposed in this example to a transient load.
The structural response is determined by a time stepping procedure.

Description:

The structure is exposed to a transient load, impacting on the center of the vertical
beam in horizontal direction, i.e. at the 4th degree-of-freedom. The time history of
the load is shown below. The result shall be displayed as time history plots of the
4th degree-of-freedom and the 11th degree-of-freedom. At time t = 0 the frame is at
rest. The timestep is chosen as ∆t = 0.001 seconds and the integration is performed
for T = 1.0 second. At every 0.1 second the deformed shape of the whole structure
shall be displayed.
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The load is generated using the gfunc-function. The time integration is performed
by the step2-function. Because there is no damping present, the C-matrix is entered
as [ ].

dt=0.005; T=1;

% --- the load -----------------------------------------------

G=[0 0; 0.15 1; 0.25 0; T 0]; [t,g]=gfunc(G,dt);

f=zeros(15, length(g)); f(4,:)=1000*g;

% --- boundary condition, initial condition ------------------

bc=[1 0; 2 0; 3 0; 14 0];

d0=zeros(15,1); v0=zeros(15,1);

% --- output parameters --------------------------------------

ntimes=[0.1:0.1:1]; nhist=[4 11];

% --- time integration parameters ----------------------------

ip=[dt T 0.25 0.5 10 2 ntimes nhist];

% --- time integration ---------------------------------------

k=sparse(K); m=sparse(M);
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[Dsnap,D,V,A]=step2(k,[],m,d0,v0,ip,f,bc);

The requested time history plots are generated by the following commands

figure(1), plot(t,D(1,:),’-’,t,D(2,:),’--’)

grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)

title(’Displacement(time) for the 4th and 11th’...

’ degree-of-freedom’)

text(0.3,0.009,’solid line = impact point, x-direction’)

text(0.3,0.007,’dashed line = center, horizontal beam,’...

’ y-direction’)
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Time history at DOF 4 and DOF 11.

The deformed shapes at time increment 0.1 sec are stored in Dsnap. They are visu-
alized by the following commands:

figure(2),clf, axis(’equal’), hold on, axis off

magnfac=25;

title(’Snapshots (sec), magnification = 25’);

for i=1:5;

Ext=Ex+(i-1)*3; eldraw2(Ext,Ey,[2 3 0]);

Edb=extract(Edof,Dsnap(:,i));

eldisp2(Ext,Ey,Edb,[1 2 2],magnfac);

Time=num2str(ntimes(i)); text(3*(i-1)+.5,1.5,Time);

end;

Eyt=Ey-4;

for i=6:10;

Ext=Ex+(i-6)*3; eldraw2(Ext,Eyt,[2 3 0]);
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Edb=extract(Edof,Dsnap(:,i));

eldisp2(Ext,Eyt,Edb,[1 2 2],magnfac);

Time=num2str(ntimes(i)); text(3*(i-6)+.5,-2.5,Time);

end

Snapshots (sec), magnification = 25

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1

Snapshots of the deformed geometry for every 0.1 sec.
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Purpose:

This example concerns reduced system analysis for the frame structure defined in
exd1. Transient analysis on modal coordinates is performed for the reduced system.

Description:

In the previous example the transient analysis was based on the original finite element
model. Transient analysis can also be employed on some type of reduced system,
commonly a subset of the eigenvectors. The commands below pick out the first two
eigenvectors for a subsequent time integration, see constant nev. The result in the
figure below shall be compared to the result in exd2.
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TWO EIGENVECTORS ARE USED

Time history at DOF 4 and DOF 11 using two eigenvectors.

dt=0.002; T=1; nev=2;

% --- the load -----------------------------------------------

G=[0 0; 0.15 1; 0.25 0; T 0]; [t,g]=gfunc(G,dt);

f=zeros(15, length(g)); f(4,:)=9000*g;

fr=sparse([[1:1:nev]’ Egv(:,1:nev)’*f]);

% --- reduced system matrices --------------------------------

kr=sparse(diag(diag(Egv(:,1:nev)’*K*Egv(:,1:nev))));

mr=sparse(diag(diag(Egv(:,1:nev)’*M*Egv(:,1:nev))));

% --- initial condition --------------------------------------

dr0=zeros(nev,1); vr0=zeros(nev,1);

% --- output parameters --------------------------------------

ntimes=[0.1:0.1:1]; nhistr=[1:1:nev];

% --- time integration parameters ----------------------------

ip=[dt T 0.25 0.5 10 nev ntimes nhistr];

% --- time integration ---------------------------------------

[Dsnapr,Dr,Vr,Ar]=step2(kr,[],mr,dr0,vr0,ip,fr,[]);

% --- mapping back to original coordinate system -------------
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DsnapR=Egv(:,1:nev)*Dsnapr; DR=Egv(nhist,1:nev)*Dr;

% --- plot time history for two DOF:s ------------------------

figure(1), plot(t,DR(1,:),’-’,t,DR(2,:),’--’)

axis([0 1.0000 -0.0100 0.0200])

grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)

title(’Displacement(time) at the 4th and 11th’...

’ degree-of-freedom’)

text(0.3,0.017,’solid line = impact point, x-direction’)

text(0.3,0.012,’dashed line = center, horizontal beam,’...

’ y-direction’)

text(0.3,-0.007,’2 EIGENVECTORS ARE USED’)
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Purpose:

This example deals with a time varying boundary condition and time integration for
the frame structure defined in exd1.

Description:

Suppose that the support of the vertical beam is moving in the horizontal direction.
The commands below prepare the model for time integration. Note that the structure
of the boundary condition matrix bc differs from the structure of the load matrix f
defined in exd2.

The first eight eigenmodes (Hz)

6.983 43.08 66.58 162.7

230.3 295.6 426.2 697.8

Time dependent boundary condition at the support, DOF 1.

dt=0.002; T=1;

% --- boundary condition, initial condition ------------------

G=[0 0; 0.1 0.02; 0.2 -0.01; 0.3 0.0; T 0]; [t,g]=gfunc(G,dt);

bc=zeros(4, 1 + length(g));

bc(1,:)=[1 g]; bc(2,1)=2; bc(3,1)=3; bc(4,1)=14;

d0=zeros(15,1); v0=zeros(15,1);

% --- output parameters --------------------------------------

ntimes=[0.1:0.1:1]; nhist=[1 4 11];

% --- time integration parameters ----------------------------

ip=[dt T 0.25 0.5 10 3 ntimes nhist];

% --- time integration ---------------------------------------

k=sparse(K); m=sparse(M);

[Dsnap,D,V,A]=step2(k,[],m,d0,v0,ip,[],bc);

% --- plot time history for two DOF:s ------------------------

figure(1), plot(t,D(1,:),’-’,t,D(2,:),’--’,t,D(3,:),’-.’)

grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)

title(’Displacement(time) at the 1st, 4th and 11th’...

’ degree-of-freedom’)

text(0.2,0.022,’solid line = bottom, vertical beam,’...
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’ x-direction’)

text(0.2,0.017,’dashed line = center, vertical beam,’...

’ x-direction’)

text(0.2,0.012,’dashed-dotted line = center,’...

’ horizontal beam, y-direction’)

% --- plot displacement for some time increments -------------

figure(2),clf, axis(’equal’), hold on, axis off

magnfac=20;

title(’Snapshots (sec), magnification = 20’);

for i=1:5;

Ext=Ex+(i-1)*3; eldraw2(Ext,Ey,[2 3 0]);

Edb=extract(Edof,Dsnap(:,i));

eldisp2(Ext,Ey,Edb,[1 2 2],magnfac);

Time=num2str(ntimes(i)); text(3*(i-1)+.5,1.5,Time);

end;

Eyt=Ey-4;

for i=6:10;

Ext=Ex+(i-6)*3; eldraw2(Ext,Eyt,[2 3 0]);

Edb=extract(Edof,Dsnap(:,i));

eldisp2(Ext,Eyt,Edb,[1 2 2],magnfac);

Time=num2str(ntimes(i)); text(3*(i-6)+.5,-2.5,Time);

end
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Snapshots (sec), magnification = 20
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Snapshots of the deformed geometry for every 0.1 sec.
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9.5 Nonlinear analysis

This section illustrates some nonlinear finite element calculations.

Nonlinear analysis

exN1 Second order theory analysis of a frame

exN2 Buckling analysis of a frame

Note: The examples listed above are supplied as .m-files on the CALFEM diskette under
the directory examples. The example files are named according to the table.
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Purpose:

Analysis of a plane frame using second order theory.

Description:

The frame of exs5 is analysed again, but it is now subjected to a load case including
a horizontal load and two vertical point loads. Second order theory is used.

H

P P

A B

A1, I1, E
4.0 m

6.0 m

A2, I2, E

A1, I1, E

A1 = 45.3e−4 m2

I1 = 2510e−8 m4

A2 = 142.8e−4 m2

I2 = 33090e−8 m4

E = 2.10e5 MPa
P = 1 MN
H = 0.001 MN

The finite element model consisting of three beam elements and twelve degrees of
freedom is repeated here.
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The following .m-file defines the finite element model.

% ----- Topology -----

Edof=[1 1 2 3 4 5 6;

2 10 11 12 7 8 9;

3 4 5 6 7 8 9];
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% ----- Element properties and global coordinates -----

E=2.1e11;

A1=45.3e-4; A2=142.8e-4;

I1=2510e-8; I2=33090e-8;

ep1=[E A1 I1]; ep3=[E A2 I2];

Ex=[0 0;6 6;0 6]; Ey=[0 4;0 4;4 4];

% ----- Load vector -----

f=zeros(12,1);

f(4)=1000; f(5)=-1000000; f(8)=-1000000;

The beam element function of the second order theory beam2g requires a normal
force as input variable. In the first iteration this normal force is chosen to zero.
This means that the first iteration is equivalent to a linear first order analysis using
beam2e. Since the normal forces are not known initially, an iterative procedure has
to be applied, where the normal forces N are updated according to the results of
the former iteration. The iterations continue until the difference in normal force of
the two last iteration steps is less than an accepted error eps, (N−N0)/N0 < eps.
The small value given to the initial normal force N(1) is to avoid division by zero
in the second convergence check. If N does not converge in 20 steps the analysis is
interrupted.

% ----- Initial values for the iteration -----

eps=0.01; % Error norm

N=[0.01 0 0]; % Initial normal forces

N0=[1 1 1]; % Normal forces of the initial former iteration

n=0; % Iteration counter

% ----- Iteration procedure -----

while(abs((N(1)-N0(1))/N0(1)) > eps)

n=n+1;

K=zeros(12,12);

Ke1=beam2g(Ex(1,:),Ey(1,:),ep1,N(1));

Ke2=beam2g(Ex(2,:),Ey(2,:),ep1,N(2));

Ke3=beam2g(Ex(3,:),Ey(3,:),ep3,N(3));

K=assem(Edof(1,:),K,Ke1);

K=assem(Edof(2,:),K,Ke2);

K=assem(Edof(3,:),K,Ke3);
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bc=[1 0;2 0;3 0;10 0;11 0;12 0];

a=solveq(K,f,bc)

Ed=extract(Edof,a);

es1=beam2gs(Ex(1,:),Ey(1,:),ep1,Ed(1,:),N(1))

es2=beam2gs(Ex(2,:),Ey(2,:),ep1,Ed(2,:),N(2))

es3=beam2gs(Ex(3,:),Ey(3,:),ep3,Ed(3,:),N(3))

N0=N;

N=[es1(1,1) es2(1,1) es3(1,1)];

if (n>20)

disp(’The solution doesn’’t converge’)

return

end

end

Displacements and element forces from the linear elastic analysis and from the second
order theory analysis respectively:

a = a =

0 0

0 0

0 0

0.0005 0.0008

-0.0042 -0.0042

-0.0000 -0.0000

0.0005 0.0008

-0.0042 -0.0042

-0.0000 -0.0000

0 0

0 0

0 0
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es1 = es1 =

1.0e+05 * 1.0e+05 *

-9.9967 -0.0050 -0.0102 -9.9954 -0.0050 -0.0142

-9.9967 -0.0050 0.0098 -9.9954 -0.0050 0.0138

es2 = es2 =

1.0e+06 * 1.0e+06 *

-1.0003 -0.0005 -0.0010 -1.0005 -0.0005 -0.0014

-1.0003 -0.0005 0.0010 -1.0005 -0.0005 0.0014

es3 = es3 =

-499.5747 326.9323 981.6016 1.0e+03 *

-499.5747 326.9323 -979.9922

-0.4996 0.4595 1.3793

-0.4996 0.4595 -1.3777

Using the second order theory, the horizontal displacement of the upper left corner
of the frame increases from 0.5 to 0.8 mm. Both moments MA and MB are increased
from 1.0 to 1.4 kNm.
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Purpose:

Buckling analysis of a plane frame.

Description:

The frame of exn1 is in this example analysed with respect to security against buckling
for a case when all loads are increased proportionally. The initial load distribution
of exn1 is increased by a loading factor alpha until buckling occurs, i.e. the deter-
minant of the stiffness matrix K passes zero. For each value of alpha a second order
theory calculation of type exn1 is performed. The horizontal displacement a4 and
the moment MA are plotted against alpha. The shape of the buckling mode is also
plotted using the last computed displacement vector before buckling occurs.

The finite element model, i.e. the vectors Edof, ep1, ep3, Ex, and Ey, defined in exn1
is used.

% ----- Initial loads -----

f0=zeros(12,1);

f0(4)=1000; f0(5)=-1000000; f0(8)=-1000000;

% ----- Increase loads until det(K)=0 -----

j=0;

for alpha=1:0.1:20

j=j+1;

N=[0.1 0 0];

N0=[1 1 1];

% ----- Iteration for convergence -----

eps=0.00001;

n=0;

while(abs((N(1)-N0(1))/N0(1)) > eps)

n=n+1;

K=zeros(12,12);

f=f0*alpha;

Ke1=beam2g(Ex(1,:),Ey(1,:),ep1,N(1));

Ke2=beam2g(Ex(2,:),Ey(2,:),ep1,N(2));

Ke3=beam2g(Ex(3,:),Ey(3,:),ep3,N(3));
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K=assem(Edof(1,:),K,Ke1);

K=assem(Edof(2,:),K,Ke2);

K=assem(Edof(3,:),K,Ke3);

bc=[1 0;2 0;3 0;10 0;11 0;12 0];

[a,Q]=solveq(K,f,bc);

Ed=extract(Edof,a);

es1=beam2gs(Ex(1,:),Ey(1,:),ep1,Ed(1,:),N(1));

es2=beam2gs(Ex(2,:),Ey(2,:),ep1,Ed(2,:),N(2));

es3=beam2gs(Ex(3,:),Ey(3,:),ep3,Ed(3,:),N(3));

N0=N;

N=[es1(1,1) es2(1,1) es3(1,1)];

if (n>20)

disp(’The solution doesn’’t converge’)

return

end

end

% ----- Check the determinant for buckling -----

Kred=red(K,bc(:,1));

if (det(Kred) <= 0)

disp(’Determinant <= 0, buckling load passed’)

break

end

disp([’Alpha= ’,num2str(alpha),’ is OK!’,int2str(n), ...

’ iterations are performed.’])

disp(’ ’)

% ----- Save values for plotting of results -----

deform(j)=a(4);

M(j)=Q(3);

loadfact(j)=alpha;

bmode=a;

end
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The following text strings are produced by the .m-file.

Alpha= 1 is OK! 3 iterations are performed.

Alpha= 1.1 is OK! 3 iterations are performed.

Alpha= 1.2 is OK! 3 iterations are performed.

Alpha= 1.3 is OK! 3 iterations are performed.

.

.

.

Alpha= 2.4 is OK! 3 iterations are performed.

Alpha= 2.5 is OK! 3 iterations are performed.

Alpha= 2.6 is OK! 3 iterations are performed.

Alpha= 2.7 is OK! 3 iterations are performed.

Alpha= 2.8 is OK! 3 iterations are performed.

Alpha= 2.9 is OK! 3 iterations are performed.

Alpha= 3 is OK! 3 iterations are performed.

Alpha= 3.1 is OK! 4 iterations are performed.

Determinant <= 0, buckling load is passed

The requested plots of the horizontal displacement, the moment MA, and the shape
of the buckling mode are generated by the following commands

%----- Plot results -----

figure(1), clf, plot(deform(:),loadfact(:),’+’,deform(:),loadfact(:),’--’)

axis([0 0.1 1 3.5]), grid

xlabel(’Horizontal displacement (m)’), ylabel(’alpha’)

title(’Displacement(alpha) for the upper left corner’)

figure(2), clf, plot(M(:),loadfact(:),’+’,M(:),loadfact(:),’--’)

axis([0 1e5 1 3.5]), grid

xlabel(’Moment in A (Nm)’), ylabel(’alpha’)

title(’Supporting moment M-A(alpha)’)

figure(3), clf, axis off

eldraw2(Ex,Ey,[2,3,0]);

Ed1=extract(Edof,bmode); eldisp2(Ex,Ey,Ed1,[1 1 1],2);

title(’Shape of buckling mode’)
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