Kapitel 2

Orthotropic Materials

2.1 Elastic Strain matrix

Elastic strains are related to stresses by Hooke’s law, as stated below. The stress-
strain relationship is in each material point formulated in the local cartesian coor-
dinate system.

e.=Co (1)
o is the stress vector, which uses the same convention as the strain vector. The
stress vector is given below.

o =010, 0T T )" (2)

C is the material compliance matrix. The compliance matrix is given as

B —1% —# 0 0 0
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E’s are moduli of elasticity, G’s are shear moduli and v’s are Poissons ratios. The
compliance matrix should be symmetric, which gives rise to the following restric-
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tions:

B E, . B E, . B E,
Vpp = VlTE ) Wy =V ) Vip = Vpy (4)
l

The inverse of the compliance matrix is the material stiffness matrix, D, which give
the stresses produced by an elastic strain state.

[ El (1 — VrtVtr)/k El (Vrtth + Vrl)/k? El (I/Tth,« + I/tl)/k 0 0 0 7
ET (VltVtr + Vlr)/k Er (1 - Vltytl)/k Er (Vlrytl + Vtr)/k 0 0 0
D= | & (Ve +vi) /K By (vyvm +vp) /b Ey (1 —vpvg)/k 00 0
0 0 0 Gy 0 0
0 0 0 0 Gp O
I 0 0 0 0 0 Gy

where kK = 1 — v Uy — Ve Vpp — Vply — VipVpt Vs — ViV V. ' The stiffness matrix is also
symmetric, which follows from the restrictions given in (4). Furthermore D should
be positive definit i.e. e’ De > 0 (The material resists deformations), which leads
to the following restrictions:

1- UrtVty — VipVpl — Vgl — VipUpeVy — UpiVyr Vi > 0
1 — vy >0
1— Vg > 0
1—vy,vy >0

The material stiffness matrix is used when the equilibrium equations are solved,
using the Finite element method.

2.2 Coordinate systems

Three different cartesian coordinate systems are used in the spatial discretization,
one global and two different local associated with each element. The local element
coordinate systems are called element coordinate system and material coordinate
system, respectively. The three different coordinate systems are shown in figure [1

2.2.1 Global coordinate system

The global coordinates are termed (X,Y, 7). The origin is located in global node
number 1. The Global coordinate system is used to define the geometry of the
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Figur 1: Local and global coordinate systems

timber beam, and the boundary conditions.

2.2.2 Element coordinate system

The first of the local coordinate systems is called the element coordinate system.
The coordinate axes are termed (x,y,z). The origin is located in the center of
the element. The positive direction for the x-axis is from node 2 towards node 1.
The positive direction for the y-axis is from node 4 towards node 1 and finally
the positive direction for the z-axis is from node 3 towards node 1. The element
coordinate system is used for the interpolation between the element nodes and the
element integration.

2.2.3 Material coordinate system

The second coordinate system is the element material coordinate system, with axes
(I,7,t). The origin of the material coordinate system is also located in the center of
the element, and the material directions are assumed to be constant in the element,
which make it necessary with a large number of elements in plane perpendicular to
the grain direction.
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2.2.4 Transformation between coordinate systems

The transformation of properties described in the material coordinate system to the
element coordinate system is described in this section. Properties can be geometric
points, material properties eg. material stiffness or physical quantities eg. stress or
heat flux. The transformation of geometrical points between the two coordinate
systems are:

T
y | =AT | r (7)
z t

l. 1, L.
A=|ry, ry 18 (8)
ty ty, t.

The first row in A is a unit vector in the [-direction, described in the xyz-coordinate
system, the second is a unit vector in the r-direction and the last row is a unit
vector in the t-direction. The elements in A are denoted direction cosines. The
determination of direction cosines is given i section 2.2.5. A is often called a rotation
matrix, and is an orthogonal matrix; i.e. A~ = AT. Hence the inverse of the
transformation in (7)) is given below

) x
r|=Aluy 9)
t z

The transformation of stresses and strains, from one coordinate system to another
is as given in (10)

Elrt = Gea:yz
T
Oyyz — G Oirt (10)
T\ —1
Oirt = (G ) Oy
where o, = [0y 0 0 Tir T Trt]T is the stress vector, described in the material

coordinate system and o, is the stress vector described in the element coordinate
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system. The transformation matrix G can be deduced from the elements in (8)), and
is as given here:

2oz L, L. Ll
r? 7’§ r? Ty Tuls TyTs
5 5
a_| & & 2 tut, tt. t,t. )

2yry 21y 20r, lgry A+l Lrg +lr. Lr,+Lry
2ty 20, 20t tuly )l tly+tl tyl 1,
i 2rpty 2ryty 21t Tty +ryty ity + ity Tyt 1oty |

The (GT)_1 matrix is given in (12), when the G matrix is subdivided into four
3 x 3 matrices, termed G, Gia, Gop and Gos.

G G —1 G 2Gyy g
{ Ga1 Go } ’ { %Gzl Goo ] (12)

The transformation of stiffness or flexibility properties, from the material to the
element coordinate system, is performed by a tensor-like transformation, as stated
below.

Dmyz - GTDZTtG (13)

where Dy,; is the material stiffness matrix, formulated in the material coordinate
system, given by (5) and D,,, is the material stiffness matrix formulated in the
element coordinate system. The G matrix is the transformation matrix given in (11)
The transformation of thermal conductivities and moisture transport properties is
done in a similar tensor-like way, as stated below

A:Eyz = ATAZMA (14)

where Ay is the material conductivity matrix formulated in the material coordinate
system, which is a 3 by 3 diagonal matrix containing the thermal conductivities in
the principal directions. Ay, is the material conductivity matrix formulated in the
element coordinate system. A is the transformation matrix given in (8).

2.2.5 Direction Cosines

The direction cosines are determined from the different elements location relative to
the pith, see figure (1, which are termed Agy. A has the same structure as the matrix
given in (8). Further the directions cosines are depended on two growth phenomena,
being conical angle and spiral growth, as given below.

A = AJA A, (15)
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Where A, and A; are given by (16)).

cos¢p —sing 0
A.=| sing cos¢p 0 A, =
0 0 1

cosw 0 sinw
0 1 0 (16)

—sinw 0 cosw

¢ is the conical angle and @ is the spiral grain angle. Both angles are illustrated in

figure 2

Figur 2: conical angle and spiral growth



