
Kapitel 2

Orthotropic Materials

2.1 Elastic Strain matrix

Elastic strains are related to stresses by Hooke's law, as stated below. The stress-
strain relationship is in each material point formulated in the local cartesian coor-
dinate system.

εe = Cσ (1)

σ is the stress vector, which uses the same convention as the strain vector. The
stress vector is given below.

σ = [σl σr σt τlr τlt τrt]
T (2)

C is the material compliance matrix. The compliance matrix is given as

C =




1
El

−νrl

Er
−νtl

Et
0 0 0

−νlr

El

1
Er

−νtr

Et
0 0 0

−νlt

El
−νrt

Er

1
Et

0 0 0

0 0 0 1
Glr

0 0

0 0 0 0 1
Glt

0

0 0 0 0 0 1
Grt




(3)

E's are moduli of elasticity, G's are shear moduli and ν's are Poissons ratios. The
compliance matrix should be symmetric, which gives rise to the following restric-
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tions:

νrl = νlr
Er

El

; νtl = νlt
Et

El

; νtr = νrt
Et

Er

(4)

The inverse of the compliance matrix is the material sti�ness matrix, D, which give
the stresses produced by an elastic strain state.

D =




El (1− νrtνtr)/k El (νrtνtl + νrl)/k El (νrlνtr + νtl)/k 0 0 0

Er (νltνtr + νlr)/k Er (1− νltνtl)/k Er (νlrνtl + νtr)/k 0 0 0

Et (νlrνrt + νlt)/k Et (νltνrl + νrt)/k Et (1− νlrνrl)/k 0 0 0

0 0 0 Glr 0 0
0 0 0 0 Glt 0
0 0 0 0 0 Grt




(5)

where k = 1− νrtνtr− νlrνrl− νltνtl− νlrνrtνtl− νrlνtrνlt. The sti�ness matrix is also
symmetric, which follows from the restrictions given in (4). Furthermore D should
be positive de�nit i.e. εTDε > 0 (The material resists deformations), which leads
to the following restrictions:

1− νrtνtr − νlrνrl − νltνtl − νlrνrtνtl − νrlνtrνlt > 0
1− νrtνtr > 0
1− νltνtl > 0
1− νlrνrl > 0

(6)

The material sti�ness matrix is used when the equilibrium equations are solved,
using the Finite element method.

2.2 Coordinate systems

Three di�erent cartesian coordinate systems are used in the spatial discretization,
one global and two di�erent local associated with each element. The local element
coordinate systems are called element coordinate system and material coordinate
system, respectively. The three di�erent coordinate systems are shown in �gure 1

2.2.1 Global coordinate system

The global coordinates are termed (X,Y, Z). The origin is located in global node
number 1. The Global coordinate system is used to de�ne the geometry of the
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Figur 1: Local and global coordinate systems

timber beam, and the boundary conditions.

2.2.2 Element coordinate system

The �rst of the local coordinate systems is called the element coordinate system.
The coordinate axes are termed (x, y, z). The origin is located in the center of
the element. The positive direction for the x-axis is from node 2 towards node 1.
The positive direction for the y-axis is from node 4 towards node 1 and �nally
the positive direction for the z-axis is from node 3 towards node 1. The element
coordinate system is used for the interpolation between the element nodes and the
element integration.

2.2.3 Material coordinate system

The second coordinate system is the element material coordinate system, with axes
(l, r, t). The origin of the material coordinate system is also located in the center of
the element, and the material directions are assumed to be constant in the element,
which make it necessary with a large number of elements in plane perpendicular to
the grain direction.
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2.2.4 Transformation between coordinate systems

The transformation of properties described in the material coordinate system to the
element coordinate system is described in this section. Properties can be geometric
points, material properties eg. material sti�ness or physical quantities eg. stress or
heat �ux. The transformation of geometrical points between the two coordinate
systems are:




x
y
z


 = AT




l
r
t


 (7)

Where A is given by (8)

A =




lx ly lz
rx ry rz

tx ty tz


 (8)

The �rst row in A is a unit vector in the l-direction, described in the xyz-coordinate
system, the second is a unit vector in the r-direction and the last row is a unit
vector in the t-direction. The elements in A are denoted direction cosines. The
determination of direction cosines is given i section 2.2.5. A is often called a rotation
matrix, and is an orthogonal matrix; i.e. A−1 = AT. Hence the inverse of the
transformation in (7) is given below




l
r
t


 = A




x
y
z


 (9)

The transformation of stresses and strains, from one coordinate system to another
is as given in (10)

εlrt = Gεxyz

σxyz = GTσlrt (10)
σlrt =

(
GT

)−1
σxyz

where σlrt = [σl σr σt τlr τlt τrt]
T is the stress vector, described in the material

coordinate system and σxyz is the stress vector described in the element coordinate
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system. The transformation matrix G can be deduced from the elements in (8), and
is as given here:

G =




l2x l2y l2z lxly lxlz lylz
r2
x r2

y r2
z rxry rxrz ryrz

t2x t2y t2z txty txtz tytz
2lxrx 2lyry 2lzrz lxry + lyrx lzrx + lxrz lyrz + lzry

2lxtx 2lyty 2lztz txly + tylx tzlx + txlz tylz + tzly
2rxtx 2ryty 2rztz rxty + rytx rztx + rxtz rytz + rzty




(11)

The
(
GT

)−1 matrix is given in (12), when the G matrix is subdivided into four
3× 3 matrices, termed G11,G12,G21 and G22.

G =

[
G11 G12

G21 G22

]
, G−1 =

[
G11 2G12
1
2
G21 G22

]T

(12)

The transformation of sti�ness or �exibility properties, from the material to the
element coordinate system, is performed by a tensor-like transformation, as stated
below.

Dxyz = GTDlrtG (13)

where Dlrt is the material sti�ness matrix, formulated in the material coordinate
system, given by (5) and Dxyz is the material sti�ness matrix formulated in the
element coordinate system. The G matrix is the transformation matrix given in (11)
The transformation of thermal conductivities and moisture transport properties is
done in a similar tensor-like way, as stated below

λxyz = ATλlrtA (14)

where λlrt is the material conductivity matrix formulated in the material coordinate
system, which is a 3 by 3 diagonal matrix containing the thermal conductivities in
the principal directions. λxyz is the material conductivity matrix formulated in the
element coordinate system. A is the transformation matrix given in (8).

2.2.5 Direction Cosines

The direction cosines are determined from the di�erent elements location relative to
the pith, see �gure 1, which are termed A0. A0 has the same structure as the matrix
given in (8). Further the directions cosines are depended on two growth phenomena,
being conical angle and spiral growth, as given below.

A = A0AcAs (15)
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Where Ac and As are given by (16).

Ac =




cos φ − sin φ 0
sin φ cos φ 0

0 0 1


 As =




cos $ 0 sin $
0 1 0

− sin $ 0 cos $


 (16)

φ is the conical angle and $ is the spiral grain angle. Both angles are illustrated in
�gure 2
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Figur 2: conical angle and spiral growth
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