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Preface

This textbook has been written for the course Statics IV atiapelastic beam structures
given at the 5th semester of the undergraduate programmeilrE@gineering at Aalborg Uni-
versity. The book provides a theoretical basis for the ustdeding of the structural behaviour
of beams in three-dimensional structures. In the coursetekt is supplemented with labora-
tory work and hands-on exercises in commercial structungefielement programs as well as
MATLAB. The course presumes basic knowledge of ordinary differleequations and struc-
tural mechanics. A prior knowledge about plane frame stimest is an advantage though not
mandatory. The authors would like to thank Mrs. Solveig lébsmng for typing the manuscript.

Aalborg, August 2008 Lars Andersen and Sgren R.K. Nielsen
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CHAPTER 1
Beams in three dimensions

This chapter gives an introduction is given to elastic beanthree dimensions. Firstly, the
equations of equilibrium are presented and then the ckdsseam theories based on Bernoulli-
Euler and Timoshenko beam kinematics are derived. The fottise chapter is the flexural de-
formations of three-dimensional beams and their coupliit exial deformations. Only a short
introduction is given to torsional deformations, or twist beams in three dimensions. A full de-
scription of torsion and shear stresses is given in the rieegters. At the end of this chapter, a
stiffness matrix is formulated for a three-dimensional @gheko beam element. This element can
be used for finite-element analysis of elastic spatial fratngctures.

1.1 Introduction

In what follows, the theory of three-dimensional beams iioed.

1.2 Equations of equilibrium for spatial beams

An initially straight beam is considered. When the beam é= fof external loads, the beam
occupies a so-called referential state. In the referenta&k the beam is cylindrical with the
lengthl, i.e. the cross-sections are everywhere identical. The displaneand rotation of the
beam is described in a referentfal y, z)-coordinate system with base unit vect¢tsj, k}, the
origin O placed on the left end-section, and thexis parallel with the cylinder and orientated
into the beam, see Fig. 1-1. For the time being, the positian and the orientation of thg-
andz-axes may be chosen freely.

The beam is loaded by a distributed load per unit length oféfierential scale defined by
the vector fieldy = q(«) and a distributed moment load vector per unit lengith= m(z). A
differential beam element of the lengily is then loaded by the external force vecteltz and
external moment vectandz as shown in Fig. 1-1. The length of the differential beam elem
may change during deformations due to axial strains. Howyévis does not affect the indicated
load vectors which have been defined per unit length of thereetial state. Measured in the
(z,y, z)-coordinate systenyy andm have the components

qx My
a=| q |, m=| my |. (1-1)
qz my



2 Chapter 1 — Beams in three dimensions

qdz mdzx

W[

F +dF
M + dM

x
h 4

Figure 1-1 Beam in referential state.

As a consequence of the external loads, the beam is defommthie so-called current state
where the external loads are balanced by an internal sefdioe vectorF = F(z) and an
internal section moment vectdf = M(z). These vectors act on the cross-section with the base
unit vectori of the xz-axis as outward directed normal vector. With referenceitp F-2, the
components of andM in the (z, y, z)-coordinate system are:

N M,
F=|Q, |, M=|M, (1-2)
Q- M,

Here,N = N(z) is theaxial force whereas the componen®s = Q,(z) andQ. = Q.(x) Sig-
nify theshear forcecomponents in thg- andz-directions. The axial componehf,, = M, (z) of
the section moment vector is denoted thiesional momentThe component8/, = M, (xz) and
M, = M. (z) in they- andz-directions represent tHeending momentsThe torsional moment
is not included in two-dimensional beam theory. Howevetthia design of three-dimensional
frame structures, a good understanding of the torsiona\ietr of beams is crucial.

Assuming that the displacements remain small, the equatiagtatic equilibrium can be
established in the referential state. With reference toFig, the left end-section of the element
is loaded with the section force vecteiF and the section moment vecteiM. At the right
end-section, these vectors are changed differentialtyliht- dF andM + dM, respectively.
Force equilibrium and moment equilibrium formulated at ploint of attack of the section force
vector —F at the left end-section then provides the following equetiof force and moment

DCE Lecture Notes No. 23



1.2 Equations of equilibrium for spatial beams 3

z / Mz
Q-
Figure 1-2 Components of the section force vector and the section moveetor.

equilibrium of the differential beam element:

-F+F+dF +qdx=0=
dF

—+q=0 (1-3a)
dz

—M+ M +dM +idx x (F + dF) + mdx =0 =

M

d—+i><F+m:O (1-3b)
dz

From Egs. (1-1) and (1-2) follows that Egs. (1-3a) and (1a8®)equivalent to the following
component relations:

dN dQ, dQ,
B — + = U, ——— =0, = U, 1—4
e +q: =0 I +qy =0 e +q.=0 (1-4a)
z = s —_ 2 f— 5 . = . 1—4
o, tm 0 In Q:+my =0 . +Qy+m.=0 (1-4b)

At the derivation of Eq. (1—4b), it has been utilised that
ixF=ix(Ni+Q,j+Q.k)=Nixi+Q,ixjQ.,ixk=0i-Q.j+Q/k. (1-5)

Henceji x F has the component$, —@Q., Q, }. Itis noted that a non-zero normal-force compo-
nent is achieved when the moment equilibrium equationsaraulated in the deformed state.
This may lead to coupled lateral-flexural instability ascdssed in a later chapter.

1.2.1 Section forces and stresses in a beam

On the cross-section with the outward directed unit veatedicectional to the:-axis, the normal
stresso,, and the shear stresses, ando,. act as shown in Fig. 1-3. These stresses must be

Elastic Beams in Three Dimensions



4 Chapter 1 — Beams in three dimensions

statically equivalent to the components of the force veEtand the section moment vectvi
as indicated by the following relations:

N[ owdd Q= [ondd Q.= [ onda (1-6a)
A A A
M, :/(amy—oxyz)dA, M, = / 205:dA, M, = —/ Yoz dA. (1-6b)
A A A
Ay Qy

4\

Q=

Figure 1-3 Stresses and stress resultant on a cross-section of the beam

Ozy dy
Ozy ¥ Ozx
N W Z 2 R
Ozx
7o
,0zz
, dz
7
s/
s/
dx

Figure 1-4 Components of the stress tensor.

On sections orthogonal to the andz-axes, the stress¢s,,, 0y, 0y} and{o.., 0.4, 0.y}
act as shown in Fig. 1-4. The first index indicates the coatdimxis co-directional to the
outward normal vector of the section, whereas the secorekigpecifies the direction of action
of the stress component. The stresses shown in Fig.1-4 fereoimponents of the stress tensor

DCE Lecture Notes No. 23



1.2 Equations of equilibrium for spatial beams 5

o inthe(z,y, z)-coordinate system given as

Ozx Oyx Ozx
O = | Opy Oyy Ozy |- (1-7)
Oxz Oyz Ozz

Moment equilibrium of the cube shown in Fig. 1-4 requires tha
Ozy = Oyzx, Oxz = Ozx, Oyz = Ozy- (1_8)

Hence,o is a symmetric tensor.

1.2.2 Kinematics and deformations of a beam

The basic assumption in the classical beam theory is thatssection orthogonal to theaxis

at the coordinate remains plane and keeps its shape during deformation. kr @tbrds, the
cross-section translates and rotates as a rigid body. Edpethis means that Poisson contrac-
tions in the transverse direction due to axial strains amerigd. Hence, the deformed position
of the cross-section is uniquely described by a positionoree = w(x) and a rotation vector
6 = 6(x) with the following components in ther, y, z)-coordinate system:

Wy 0,
W= Wy |, 0= |0, |. (1-9)
W, 0,

Further, only linear beam theory will be considered. Thisangethat the displacement compo-
nentsw,, w, andw, in Eq. (1-9) all small compared to the beam lengtkurther the rotation
component$,, 8, andd., are all small. Especially, this means that

sinf ~ tanf ~ 6, (1-10)

wheref represents any of the indicated rotation components mea@saradians. The various
displacement and rotation components have been illugtiatéig. 1-5. The rotation component
around ther-axis is known as the twist of the beam.

Now, a material point on the cross-section with the coordi®ar, v, z) in the referential
state achieves a displacement veaio= u(x,y, z) with the component§u,, u,, u.} in the
(z,y, z)-coordinate system given as (see Fig. 1-5):

Uz (T, Y, 2) = wa(x) + 20, () — yb. (), (1-11a)
uy(2,y,2) = wy(v) — 20,(2), (1-11b)
uz(z,y,2) = wo(x) + yba (). (1-11c)

It follows that the displacement of any material point isetetined if only the 6 components of
w(z) and@(x) are known at the beam coordinate Hence, the indicated kinematic constraint
reduces the determination of the continuous displacensdtfi= u(z, y, z) to the determina-
tion of the 6 deformation components, = wy(x), wy, = wy(z), w, = w,(z), 0, = 0,(x),

0, = 6,(x) andf, = 0.(z) of a single spatial coordinate along the beam axis.

Elastic Beams in Three Dimensions



6 Chapter 1 — Beams in three dimensions

Figure 1-5 Deformation components in beam theory.

The strains conjugated t9,,, 0., ando,. are the axial straia,, and the angular strains
Yoy = 265y @Ndy,, = 2e,.. They are related to displacement components as follows:

N T
T 9 dx iz Yz
B Ouy % _ dwy do,

oy = dy or  dr Cdr

Ou, | Ou,  dw, do,
Yrz = E + or % + y% + Gy(ﬂf) (1—120)

From Eq. (1-12) follows that,, = v.,(z, z) is independent of as a consequence of the
presumed plane deformation of the cross-section. Thershbar stress,,, = o, (x, z) must
also be constant over the cross-section. Especially# 0 at the upper and lower edge of the
cross-section as illustrated in Fig. 1-6a. However, if thiéndrical surface is free of surface
shear tractions, thes,, = 0 at the edge. Hencey,, # oy, in contradiction to Eq. (1-8).
In reality o, = 0 at the edges, corresponding9, = 0. This means that the deformed
cross-section forms a right angle to the cylindrical swgfas shown in Fig. 1-6b.

The displacement fields Eq. (1-11) are only correct for beaitscross-sections which are
circular symmetric around the-axis. In all other cross-sections, the torsional monmdnptwill

(1-12a)

0.(x), (1-12b)

DCE Lecture Notes No. 23



1.2 Equations of equilibrium for spatial beams 7

Ya Oy s
—¥ Vay
Ozy d’LUy Oz dwy
dx dx

I
1 I
1 1
1 1
I I

! Wy | Wy
1 1
I I
1 1

mO, o— > - O— >
z 1 z 1
1 1
I ————— I
1 1 1 1
— —l
Wy Wz

(@) (b)

Figure 1-6 Shear stresses on deformed beam section: (a) Deformatiorogd-section in beam theory and (b) real
deformation of cross-section.

induce an additional non-planar displacement initkeis, which generally can be written in the
form uy(x,y, 2) = w(y, z)db,/dz. Thisis illustrated in Fig. 1-7. Hence, the final expression
for the axial displacement reads

do,
dx
The expressions far, andu, in Eq. (1-11) remain unchanged, any, =) is called thewarp-

ing function Whereasy and z in Eqg. (1-13) may be considered as shape functions for the
deformations caused by the rotatigh$z) andé, (x), the warping function is a shape function
defining the axial deformation of the cross-section fromrtitation component. The definition
and determination of the warping function is consideredsulasequent section.

Uy (2,9, 2) = wy(z) + 20, (2) — yb.(z) + w(y, 2) (1-13)

Section A-A
Undeformed state

Deformed top flange

Deformed bottom flange
A B Section B-B

Figure 1-7 Warping deformations in an I-beam induced by homogeneas®to The cross sections A—A and B-B are
shown with the top flange on the left and the bottom flange omigjné.

As a consequence of the inclusion of the warping, the stramponents in Eq. (1-12) are
modified as follows:

Ou,  dw, do, do, d29

er T oy T dn +Z% Vix e dx? (1-142)
_ Oug  Ouy  dw, do,

Yoy = oy + or  dx ( ) dz (1-14D)
Ouy  Ou, _dz, db,

L i il ( )d (149

Elastic Beams in Three Dimensions



8 Chapter 1 — Beams in three dimensions

0 —0y
Y z
dwy, dw,
_ dx _ dx
| |
I I
1 Wy 1 Wz
I I
I I
I
o . - B O— > o
Z 1 Y 1
I I
I I I I
—l —l
Wy Wy

Figure 1-8 Kinematics of Bernoulli-Euler beam theory.

Bernoulli-Euler beam kinematics presumes that the rotetesis-section is always orthogo-
nal to the deformed beam axis. This involves the followinditidnal kinematical constraints on
the deformation of the cross-section (see Fig. 1-8):

_dwz 0 _%

6, = L=y
Y dz’ dz

(1-15)
Assuming temporarily tha#, = 0 in bending deformations,e. disregarding the twist of the
beam, Egs. (1-14) and (1-15) then provide:

Yoy = Yoz = 0. (1-16)

Equation (1-16) implies that the shear stressesrgye= o,. = 0, and in turn that the shear
forces becomé), = Q). = 0, cf. Eq. (1-6). However, non-zero shear forces are indeesepit
in bending of Bernoulli-Euler beams. The apparent parasabssolved by noting that the shear
forces in Bernoulli-Euler beam theory cannot be derivednftbe kinematic condition, but has
to be determined from the static equations.

The development of the classical beam theory is associatachames like Galilei (1564-1642),
Mariotte (1620-1684), Leibner (1646—-1716), Jacob Beltn¢l654—1705), Euler (1707-1783),
Coulomb (1736-1806) and Navier (1785-1836), leading tantkationed Bernoulli-Euler beam
based on the indicated kinematic constraint. The inclusiomansverse shear deformation was
proposed in 1859 by Bresse (1822-1883) and extended to dymani921 by Timoshenko (1878—
1972). Due to this contribution, the resulting beam theasyeul on the strain relations Eq. (1-12),
is referred to as Timoshenko beam theory (Timoshenko 1921).

The first correct analysis of torsion in beams was given by&tant (1855). The underlying
assumption was thatf,. /dx in Eq. (1-13) was constant, so the warping in all cross-gesti
become identical. Then, the axial straip, from torsion vanishes and the distribution of the
shear strains,, and~,. are identical in all sections. Because of this, St. Venarsida is also
referred to ahilomogeneous torsion

DCE Lecture Notes No. 23



1.2 Equations of equilibrium for spatial beams 9

Whenever the twist or the warping is prevented at one or magsesectionsif,. /dx is no
longer constant as a function of Hence, axial strains occur and, as a consequence of this,
axial stresses arise and the shear strains and shear stagsserying along the beam. These
phenomena were systematically analysed by Vlasov (1961thfn-walled beams, for which
reason the resulting theory is referred tovdasov torsionor non-homogeneous torsiohlotice
that the shear stresses from Vlasov torsion have not beardeat in the present formulation.
These will be considered in a subsequent chapter.

Seen from an engineering point of view, the primary advantafgvlasov torsion theory is that it
explains a basic feature of beams, namely gnavention of warping leads to a much stiffer struc-
tural elementghan achieved in the case of homogeneous warpiaga given torsional moment
will induce a smaller twist. Warping of the cross-sectionynfar example, be counteracted by the
inclusion of a thick plate orthogonal to the beam axis anddeito the flanges and the web. The
prevention of torsion in this manner is particularly usefuthe case of slender beams with open
thin-walled cross-sections that are prone to coupled fixtorsional buckling. Obviously, Vlasov
torsion theory must be applied for the analysis of such grolklas discussed later in the book.

Next, the deformation of the cross-section may be decontpiose bending and shear com-
ponents. The bending components are caused by the bendmgmi\/, and/, and deform
as a Bernoulli-Euler beam. Hence, the bending componeatsaarsing the rotatiorts, ande.
of the cross-section. The shear components are caused Bhehe forces), and@.. These
cause the angular shear straing and~, . without rotating the cross-section. Further, the dis-
placement of the beam axis in shear takes place without tue/aHence, the curvature of the
beam axis is strictly related to the bending components-gpe —9.

With reference to Fig. 1-10, the radii of curvaturgsandr, are related to the rotation
incrementsif, and—dd, of the end-sections in the bending deformations of a difféaébeam
element of the lengthix as follows

rydf, = dx Ky = —1/r, =db,/dz
= (1-17)
—r,df, = dx Kk, = 1/ry,=db./dz
Here,x, andx, denote the components of the curvature vegtof the z-axis. Especially, for a
Bernoulli-Euler beam the curvature components becomé&f(1-15),

dw, d? Wy

Ky =—"3 K= s (1-18)
From Egs. (1-14) and (1-17) follows that the axial strain ipayvritten as

€xx(T, Y, 2) = e(x) + zhy(x) — yr. () + w(y, z)%, (1-19)
wherezs(z) denotes the axial strain of the beam along:tkeexis given as

e(z) = d;‘;”. (1-20)

Here,e(z), ky(x) and k,(z) define the axial strain and curvatures of the beam axsthe
(z)-axis.

Elastic Beams in Three Dimensions



10 Chapter 1 — Beams in three dimensions

Figure 1-9 Decomposition of cross-section deformation into bendind shear components.

z
Y A

Ty Tz

\
8

© > ®
z Y

Figure 1-10 Definition of curvature.

1.2.3 Constitutive relations for an elastic beam

In what follows we shall refer t&v (), Q, (z), Q- (z), My (z), M, (z) andDM (z) asgeneralised
stressesThese are stored in the column matrix

N(z)

y\T

)

OO

(1-21)

Q
—
&
[l
ERE
EEE
EREREEE

8
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1.2 Equations of equilibrium for spatial beams 11

The internal virtual work of these quantities per unit léngf the beam is given as

dw = No€ + QybVay + Q2072 + M0, + Mok, + M0k, = o', (1-22)
where
£(z)
=
| as(m 3

e(x) = o.(x) | (1-23)

tiy(2)

k()

The components af(z) are referred to as thgeneralised strainsThe components af (x) and
e(x) are said to be virtual work conjugated because these gigsndiefine the internal virtual
work per unit length of the beam.

Let £ andG denote the elasticity modulus and the shear modulus. Themdrmal stress
o.. and the shear stresses, ando,.. may be calculated from Eq. (1-14) as follows:

e = Bers = B (G2 429y B bor 0 ) (1-24a)
Opy = GYoy =G <dd% -0, + <g—: — z) %) , (1-24b)
Opz =GV =G <% + 0, + (g—j + y> %) . (1-24c)
By integration over the cross-sectional area, it then Yadlthat

N:E(A%+Sy%—sz%+ w%), (1-25a)
Q, =G <Ay (% 9Z> + f@%) : (1-25b)
Q.=G (Az (% + 0y> + Rz%> , (1-25c)
M, =G (Sz (dd“; + 9y> -5, (% = @) + K‘%) : (1-250)
M,=E (sy% + Iyy% — Iyz% + Iwz%> , (1-25¢)
M, = (—SZ% - Iyz% + IZZ% - Iwy%> , (1-25f)

whereA,, A., Ry, R., Sy, 5., Su, K, Iyy, I.., I,. = I.,, I,, andl,,, are cross-sectional (or
geometrical) constants identified as:

A= / dA, Ay =oa,A, A=A, (1-26a)
A

Elastic Beams in Three Dimensions



12 Chapter 1 — Beams in three dimensions

Ow Ow

R, = /A (%_z> A, R - /A ($+y> dA, (1-26b)

Sy :/sz, S, :/ydA, Sw :/wdA, (1-26¢)
A A A

hy= [ 24 L= [ s (1-264)
A A

I,. :/ysz7 Iwy:/wydA, I, :/wsz, (1-26¢)
A A A

K :/ <y2 +22+ya—w —za—w> dA. (1-26f)
A 0z dy

Here, A is the cross-sectional area, wheregsand A, signify the so-called shear areas. Beam
theory presumes a constant variation of the shear strasbeading, whereas the actual variation
is at least quadratic. The constant variation results invamestimation of the stiffness against
shear deformations, which is compensated by the indictiealr seduction factors, andc.. If

the actual distribution of the shear stresses is paralibbse factors become, = a. = 5/6.
For anI-profile, the shear area is approximately equal to the wedn are

ForGA, — oo we havey,, = Q,/(GA,) = 0. Bernoulli-Euler beam theory is charac-
terised byy,, = 0. Hence, Timoshenko theory must converge towards BernBuller theory
for the shear areas passing towards infinity. The magnitéitteecshear deformations in propor-
tion to the bending deformations depends on the quaftity)?, whereh is the height and is
the length of the beam. This relation is illustrated in Ex#ip3.

R, and R, are section constants which depend on the warping mode shgpe) as well
as the bending modes vjeandz. Further, the section constarfts and.S, are denoted the static
moments around thg- andz-axes.S,, specifies a corresponding static moment of the warping
shape function.

I, and I, signify thebending moments of inertiaround they- and z-axes, respectively.
I, is denoted theentrifugal moment of inertjawhereasl,,, and 1,,. are the corresponding
centrifugal moments of the warpistpape function and the bending mode shapes.

K is the so-calledorsion constant This defines merely the torsional stiffness in St. Venant
torsion. As mentioned above, the additional contribution\f, from Vlasov torsion will be
considered in a subsequent section.

1.3 Differential equations of equilibrium for beams

In what follows, the governing differential equations fambshenko and Bernoulli-Euler beams
are derived. At this stage, the twist and the torsional moment,, are ignored. With no further
assumptions and simplifications, Eq. (1-25) reduces to

N EA —-ES, —ES, 0 0 dw,, /dx

M, ES, EI, —EI. 0 0 db, | dx

M, |=| -BES. —EI,. EL. 0 0 . /dr | . (1-27)
Qy 0 0 0 GA, O dwy/dx — 0,

Q. 0 0 0 0 GA, dw, /dx + 6,

DCE Lecture Notes No. 23



1.3 Differential equations of equilibrium for beams 13

The coefficient matrix of Eq. (1-27) is symmetric. When fotated in a similar matrix format,
the corresponding matrix in Eq. (1-25) is not symmetric.sTifia consequence of the ignorance
of the Vlasov torsion in\/,,.

1.3.1 Governing equations for a Timoshenko beam

Next, Eq. (1-27) is inserted into the equilibrium equati¢hsda) and (1—4b), which results in
the following system of coupled ordinary differential etjaas for the determination ab,;, w,,
w,, 8, andd,:

dN/dx 0 Qx
dM, /dx Q- My
dM./dz | =| =Qy | — | m: | =
dQ, /dz 0 ay
sz/d.’I} 0 qz
EA ES, —ES. 0 0 dw,, /dx
p ES, EI, —EI. 0 0 db, ) da
— —-ES, —FEI,. El,, 0 0 de/dx
dr 0 0 0 G4, 0 dw, /dz — 0,
0 0 0 0 GA, dw, /dz + 6,
0 0 O 0 0 dw, /dx Gz
0 0 0 0 GA, db,/dx My
— 1000 -G4, 0 o, jdx | — | m. |. (1-28)
0 0 O 0 0 do./dx — 0, Qy
0 0 O 0 0 dw,/dx + 6, q

Equation (1-28) specifies the differential equations fendshenko beam theory. These should
be solved with proper boundary condition at the end-sestafrthe beam. Let, denote the
abscissa of any of the two end-sections,zy = 0 or 2o = [, wherel is the length of the beam.
At z = xq either kinematical or mechanical boundary conditions mapitescribed.

Kinematical boundary conditions mean that values:pfw,, w., 8, andd, are prescribed,

wy(T0) = Wap
wy(zg) = wypo
wy(rg) = w.o o, x9 = 0,1, (1-29)
Oy(zo) = By0
92(3’}0) = 9z,0

whereas mechanical boundary conditions imply the presenipf N, Q,, )., M, and},

N(zo) = No
Qy(‘rO) = Qy,O
Qz(l'o) = Qz,o 5 o = 0, l. (1—30)
My(zo) = Myo
]\/[z(mo) = ]\/[z70

Elastic Beams in Three Dimensions



14 Chapter 1 — Beams in three dimensions

In Eq. (1-30), the left-hand sides are expressed in kinealajuantities by means of Eq. (1-27).
Of the 10 possible boundary conditionszat= zy specified by Egs. (1-35) and (1-30), only 5
can be specified. The 5 boundary conditionsat 0 andzy = [ can be selected independently
from Eq. (1-35) and Eq. (1-30).

With given boundary conditions Eq. (1-28) can be solved ueligfor the 5 kinematic quan-
tities wy, wy, w;, 8y, 0., which make up the degrees of freedom of the cross-sectitthodgh
an analytical solution may be cumbersome, a numericaliat®g is always within reach.

1.3.2 Governing equations for a Bernoulli-Euler beam

Next, similar differential equations are specified for arerlli-Euler beam. At first the shear
forces@, and@; in the equations of equilibrium fak/,, and /. in Eq. (1-4b) are eliminated
by means of the 2nd and 3rd equations in Eq. (1-4a):

d*M,/dz* — dQ./dx + dm,,/dx = 0 d*M,/dz? + q. + dmy/dz =0
= (1-31)

d*M. /dz* + dQ, /dx + dm, /dx = 0 d*M., /dz* — g, + dm /dz = 0.

Using the Bernoulli-Euler kinematical constraint Eq. (5%1the constitutive equations for the
resulting section forces may be written as

N EA  ES, —ES. dw, /dx
M, |=| ES, EI, —EI,. —d?w, /dz* | . (1-32)
M, ~ES.. -EI,. EI, d*w, | da?

Then, the equations of equilibrium Eq. (1-4a) and Eq. (1-A34y be recasted as the following
system of coupled ordinary differential equations

d dwz d?w, d2wy
d? dPw dPw dm
ES,— — EI — = _FEI,. Y Y =0, 1-33b
dx( Vg~ g "d2>+ 9=t g =0 (1-33b)
d? d Pw d*w dm
E El,.—=+FEI,—Y Z —0. 1—
= < S, —= + vE g + 72 > +qy + e 0 (1-33c¢)

The governing equations (1-33) should be solved with 5 o§#tme boundary conditions as
indicated by Egs. (1-35) and (1-30). The difference is@hét,), 6. (zo), Qy(zo) andQ . (xo)
are represented as, cf. Egs. (1-4b) and (1-15),

~ dws(w) dw (o)

de' = 9y,07 d.’L' = 02,0a (1_34a)
dM . (z dM,(z
SR ) = Qo P ) = Qe (1-3ab)

DCE Lecture Notes No. 23



1.4 Uncoupling of axial and bending deformations 15

With this in mind, the kinematic boundary conditions for Beulli-Euler beams are given in the
form

wy(T0) = Wapo

wy(To) = wyo

wy(ro) = w.o o, x9 = 0,1, (1-35)
dw,(xo)/dz = 68y0

dwy(zo)/dx = 0.9

whereas the mechanical boundary conditions defined in E@O)lare still valid.

1.4 Uncoupling of axial and bending deformations

Up to now the position of the origi and the orientation of thg- and z-axes in the cross-
section have been chosen arbitrarily. As a consequencésoptlie deformations from the axial
force and the deformation from the bending momehts and A/, will generally be coupled.
This means that the axial forc¥ referred to the origirO will not merely induce a uniform
displacementv, of the cross-section, but also non-zero displacemeptandw. of O as well
as rotation#, andd.. Similarly, the bending momenmit/, will not merely cause a displacement
w, and a rotatiory,, of the cross-section, but also a non-zero displacemgrsnd a rotatior .,

in the orthogonal direction in addition to an axial displaeatw, of the origin. The indicated
mechanical couplings are the reason for the couplings irdiffierential equations (1-28) and
(1-33). The couplings may have a significant impact on thegiral behaviour and stability of
an engineering structure and the position of the origin fgiven beam element as well as the
orientation of the coordinate axes must be implementeactyrin a computational model.

In this section, two coordinate transformations will beigaded, in which the axial force re-
ferred to the new origiB, called thebending centreonly induces a uniform axial displacement
over the cross-section. Similarly, the bending momeédtsand A/, around the new rotategh
andz-axes, referred to as thmincipal axes will only induce the non-zero deformation compo-
nents(w,, 6,) and(w,, 8.), respectively. Especially, the moments will induce thetisement
w, = 0 of the bending centre3.

1.4.1 Determination of the bending centre

The position of the bending centig is given by the position vectarz with the components
{0,yp, z5} inthe(x, y, z)-coordinate system. In order to determine the compongnendz s,

a translation of théz, y, z)-coordinate system to a new’, 3/, z’)-coordinate system with origin
in the yet unknown bending centre is performed (see Fig. 1l-TlHe relations between the new
and the old coordinates read

/

r=ux, y:y,+yB7 Z:Z/+ZB7 (1_36)

In the new coordinate system, the displacemeii ¢fhe new origin) in the:’-direction (the
new beam axis) becomes (see Fig. 1-11):

wh, = wy + 250, — ypo,. (1-37)

Elastic Beams in Three Dimensions



16 Chapter 1 — Beams in three dimensions

AGZJMZ AB’Z,M;

<l o M
- Y > Oy, My
Figure 1-11 Translation of coordinate system.
The axial strain of fibres placed on the new beam axis becomes
dw'  duw'
e'(al) = 57 = gy =€ By~ yBhs, (1-38)

where Eq. (1-17), Eq. (1-20) and Eq. (1-37) have been uses cdmponents of the rotation
vector@ of the cross-section are identicag.

0, =0, 0,=0, 6. .=0.. (1-39)

In turn, this means that the components of the curvaturevecin the two coordinate systems
are identical as well

,_ 8y do, ,do.  de.

r— K. = = = K.
Yo day! dx v 2 da! dz

Further, the components of the section force ve&tan the two coordinate systems become
identical,i.e.

N' =N, Q, = Q, Q. =Q.. (1-41)

As a consequence of referring the axial forée= N’ to the new originB, the components
of the section vector in théx',y/, z’)-coordinate system are related to the components in the
(z,y, z)-coordinate as follows:

(1-40)

M, = M,, M, =M,—z2gN, M,=M,+ygN. (1-42)
Equations (1-38) and (1-40) provide the following relafione in terms ofs’, x;, andx:

e=¢' —2pky +ypk. = € — 2Bk, + YBK,. (1-43)
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1.4 Uncoupling of axial and bending deformations 17

Then the reIgFion.betweehN, My,Mz} and{N’,M?’J,M;} and{e, ry, k. } and{e’, ky, k. }
may be specified in the following matrix formulation:

o' =ATo, (1-44a)
e=A¢, (1-44b)
where
N S
o=|M,|, e =| Ky |, (1-45a)
L Mz i L KZ n
S S
o' =| M |, e =1 ry |, (1-45b)
M| i n;/ ]
(1 —zp ys
A=l0 1 0 |. (1-45c¢)
0 0 1

The component§SN, M, M.} and{¢, x,, k. } of o ande may be interpreted as work conjugated
generalised stresses and strains.
With reference to Eq. (1-32), the constitutive relation@stno ande is given as

o =Ce, (1-46)
whereC denotes the constitutive matrix,

A S, —S.
C=E| S, I, —I.|. (1-47)
_Sz _Iyz Izz

Likewise, the constitutive relation in the’, v/, 2’)-coordinate system reads
o' =C¢ (1-48)
where the constitutive matrix has the form

A8, =S
C'=E| Sy Iy —Iy. |. (1-49)
_SZ’ _Iy’z’ IZ’Z’

Obviously, as given by Egs. (1-47) and (1-49), the crosSeset areaA is invariant to a rotation
of the cross-section about theaxis and a translation in the andz-directions.
From Egs. (1-44a), (1-44b) and (1-46) follows that

o' = ATCe = ATCA¢ =

1 0 0 A Sy =95, 1 —zp ysB
C'=ATCA=E| —25 1 0 R 0 1 0 =
YB 0 1 _Sz _Iyz Izz 0 0 1

Elastic Beams in Three Dimensions



18 Chapter 1 — Beams in three dimensions

A Sy_ZBA _(Sz_yBA)
C' =F Sy—zpA I, —22pS,+25A —I,. +ypSy+28(S.—ypA)
—(S.—ypA) —I,. +ypSy+25(S.—ypA) I..—2ypS.+yLA

(1-50)

The idea is now to use the translational coordinate transdtion to uncouple the axial defor-
mations from the bending deformations. This requires that= S, = 0. Upon comparison
of Eq. (1-49) and Eq. (1-50), this provides the followingatins for the deformation of the
coordinates of the bending centre:

S. S
yp=—1. B= Z". (1-51)

With yg andzp given by Eq. (1-51), the bending moments of inerfja, andl...., and the
centrifugal moment of inertial,..-, in the new coordinate system can be expressed in terms of
the corresponding quantities in the old coordinate systefollbws:

Iy = Iy — 22p(Azp) + ZpA = Iy, — 2B A, (1-52a)
Lo = L. = 2y(Ayg) + ypA = L. — y3 A, (1-52b)
Ly =1, — yB(AZB) — ZB(AyB) +ypzpA = 1. — YyBzZBA. (1-52¢)

The final results in Eq. (1-52) are knownkdnig’s theorem

A

'y

Figure 1-12 Single-symmetric cross-section.

If the cross-section is symmetric around a single line, drytaxis is placed so that it
coincides with this line of symmetry, then the static momgnvanishesi.e.

s, = / 2dA =0 (1-53)
A

As a result of this, the bending centfewill always be located on the line of symmetry in a
single-symmetric cross-section, see Fig. 1-12. Obvigifghye cross-section is double symmet-
ric, then the position oB is found at the intersection of the two lines of symmetry.
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1.4 Uncoupling of axial and bending deformations 19

Example 1.1 Determination of bending and centrifugal moments of inertia of non-symmetric
thin-walled cross-section

The position of the bending centre of the cross-section shiowFig. A is determined along with the
bending moments of inertig,,,, andl.... and the centrifugal moment of inertig..,.

2a
9% L :
P ———————————————
| 2t
I
|
|
|
|
2a |
I
I
- | j—
| t
] t
| |
a
Yy

Figure A Thin-walled cross-section.

The (z, y, z)-coordinate system is placed as shown in Fig. A. Then, tHevfioig cross-sectional con-
stants are calculated:

A=2a-2t+2a-t+a-t="Tat, @)
t a 1

Sy:2a-2t-a+2a~t-§+a-t~§:5(2t+9a)+ta, (b)

Sz:2a~2t~t+2a~t-(2t+a)—|—a-t-(2t+2a+%):%(21754—8(1)25@, (©)

I _1 o 3, 1 3, 1 3_ 1o 2

w==-2t-(20)° +=-2a-t"+ < -t-a’ == (2t" + 17a") ta, (d)

3 3 3 3

I *1-2a-2a~(2t)3+i(Za)3~t+2a~t-(2t+a)2+i~a~t3+a-t~ 2t+2a+£ ’

s 12 12 2
—1(59152—0—5475 +20a%) t e
= o+ 200%) ta, ©

1 t a 1 2 2
Iyz:2a~2t~t-a+2a~t-(2t—|—a)~§—|—a~t- 2t+2a—|—§ -§:Z(St + 25ta + 4a”) ta. (f)

Here, use has been made of Konig's theorem at the calculaticontributions tal,,, .. andl,. from
the three rectangles forming the cross-section.
The coordinates of the bending centre follow from Eq. (1-&1d Egs. (a) to (c). Thus,
S 3 4 S 1 9
C = @)

2= 2 2 _ 24 2,
yp= g =gtttz = =gttt

(continued)
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20 Chapter 1 — Beams in three dimensions

t—l—%a

=

Figure B Position of bending centre in the thin-walled cross-sectio

Subsequently, the moments of inertia around the axes dfthe’, z')-coordinate system follow from
Eqg. (1-52), Eq. (1-53) and Eqgs. (d) to (f):

1, ) 19N\ 1., 2
Iy = 3(2t + 17a%)ta (7t + 14a) Tta = 2 (44t 108ta + 233a”)ta, (h)
I 2 3, 4\’ 1 ) ) ,
I = 5(5975 + 54ta + 20a”)ta — §t + za) - Tta = g(329t + 504ta + 368a”)ta, ()
Iy = i(sﬁ + 25ta + 4a”)ta — (%t + %@) (gt + %a) Tta = ﬁ(n? — 15ta — 22a*)ta. (j)

Now, for a thin-walled cross-section the thickness of thegés and the web is much smaller than the
widths of the flanges and the height of the web. In the presas# this means that< a. With this in
mind, Egs. (g) to (j) reduce to

4 9
Yp = ?a, ZB = ﬂa (N
and
233 3 92 3 11 3
Iy/y/ ~ 8—4ta y IZ/Z/ >~ ﬁta y Iy/zl >~ —7750, . (l)

It is noted that the error o, estimated by Eq. (I) increases rapidly with increasing esaloft/a.
Thus, fort/a = 0.1, the error is about3%. The errors related to the estimated values,gf and,.,
are somewhat smallere. about5% and7%, respectively. O

From now on, the origin of théz, y, z)-coordinate system is placed at the bending centre.
Then, the constitutive matrix given by Eq. (1-47) takes trenf

A 0 0
C=E|0 I, -I.|. (1-54)
O _Iyz Izz
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1.4 Uncoupling of axial and bending deformations 21

As a result of this, an axial forc& no longer induces deformations in theand z-directions,

and the bending momenid, andM . do not induce axial displacements. However, the bending
momentM,, will still |nduce displacements in thg-direction in addition to the expected dis-
placements in the-direction. Similarly, the bending moment. induces displacements in both
they- andz-directions.

1.4.2 Determination of the principal axes

In order to uncouple the bending deformations, so #gtwill only induce deformations in the
z-direction, and\/, only deformations in thg-direction, a new(a’, y’, z’)-coordinate system is
introduced with origin inB and rotated the angle around thec-axis as shown in Fig. 1-13.

ANZ,MZ
/ /
KL, M,

/ /
Ry,My

Figure 1-13 Rotation of coordinate system.

Let {N, M, M.} and{N’, M,, M} denote the components of the generalised stresses in
the (z, y, z)-coordinate system and tkig’, ¢/, z’)-coordinate system, respectively. The two sets
of generalised stresses are related as

o =Bo/, (1-55a)
where
N’ N 1 0 0
o' =| M, |, o=1| M, |, B=|0 cosp —singp |. (1-55b)
JV[’ M, 0 sing cos ¢

Likewise, the components of the generalised strains invloecbordinate systems are denoted
as{e’, wy,, K.} and{e, r,, 5. }, respectively. These are related as

e = B¢/, (1-56a)

Elastic Beams in Three Dimensions



22 Chapter 1 — Beams in three dimensions

where
e’ € 1 0 0

e = vl e=1| Ky |, B=|0 cosp —sing |. (1-56b)
K., Koy 0 sing cos @

The constitutive relation in thex’, ¢/, z’)-coordinate system reads

A 0 0
o' =C'¢, C'=E| 0 Ly —Iyw | . (1-57)

0 —I. T
The corresponding constitutive relation in the y, z)-coordinate system is given by Eq. (1-46)
with C given by Eq. (1-54). Use of Eqgs. (1-55a) and (1-56a) in Egi§Lprovides

Bo’' = Ce = CB¢’ = o' = BTCB¢/, (1-58)

where it has been utilised thBr—' = B”. Comparison of Eq. (1-57) and Eq. (1-58) leads the
following relation between the constitutive matrices

C'=B'CB
(1 0 0 A 0 0 1 0 0
=K 0 cose singp 0 Iy, —1y. 0 cosep —sing
| 0 —sing cosgp 0 —I. I, 0 sing cos ¢

A 0 0
=FE| 0 C)y Ch |. (1-59a)
L 0 C3y Cyy
where
CYy = cos® pl,, — 2cos psinpl,, +sin’ oI, (1-59b)
Cly = Chy = —sinpcos p(Iyy — I..) — (cos® ¢ — sin® p)I,., (1-59c)
Cly = cos® oI, + 2cos psinpl,, +sin? pl.,. (1-59d)
From Eq. (1-57) and Eq. (1-59) follows that
1 1 .
Iy = 5([,,,, +1..)+ 5([,,,, — I,.) cos(2¢) — I sin(2¢p), (1-60a)
1
Ly = D) sin(2p) (Lyy — I:2) — cos(2¢) 1z, (1-60D)
1 1
I, = §(Iyy +1..)— §(Iyy —1..) cos(2¢) + I, sin(2¢), (1-60c)

where use has been made of the relations

sin(2¢) = 2sin ¢ cos @, cos(2¢p) = cos® p — sin? o,

1 1
cos? o = 5(1 + cos 2¢), sin® ¢ = 5(1 — cos® ).
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1.4 Uncoupling of axial and bending deformations 23

Uncoupling of bending deformations in tie', v/, 2’)-coordinate system requires thgt,, = 0.
This provides the following relation for the determinatimithe rotation angle:

tan(2p) = I:E’;yy for I, #1..,

1
—3 sin(2p)(Ilyy — I..) — cos(2¢)l,, =0 = (1-61)
cos(2¢) =0 for I,,=1...

Note thatcos(2¢) = 0 implies thatsin(2¢) = 1. The sign okin(2¢) is chosen as follows:

sin(2p) = 1 = p=1m for I,.<0

(1-62)
sin(2¢p) = —1 = p=3r for I,.>0
Then, Eq. (1-60) provides the following solutions fgr,, and/, .
1 1
Ly = 5(Iyy + 1)+ | 1. |, L = §(Iyy + )= | Iy | . (1-63)

ForI,,, # I, the solution fottan(2¢) is fulfilled for the following two alternative solutions
for sin(2¢) andcos(2¢):

QIyz Iyy - Izz

sin(2¢) = 7 cos(2¢) = 7 , (1-64a)
21, Iy—1,.
sin(2p) = —£, cos(2p) = — 22, (1-64b)
J J

where

J= \/ (Iyy — L)% + 4I2,. (1-65)
The sign definition in Eq. (1-64a) is chosen. This implies tha

20 €[0,m] for I,.<0 and  2¢p € [m2n] for I,.>0. (1-66)

Insertion of the solution fokin(2¢) and cos(2¢) into Eq. (1-60) provides the following
results forl,, andl,.:

1 1 (1, — I..)? + 412,
Ly = 5(Iyy + I2) + 5( = J) =3 (1-67a)
1 1(Iyy — L.2)? + 417,
Loy = §(Iyy + Izz) - 5 7 5 (1—67b)
or, by insertion of/, cf. Eq. (1-65),
1 1 > 5
Ly = §(Iyy +1,.)+ 5\/(Iyy —1..)* +412,, (1-68a)
1 1 2 5
L = §(Ivy + IZZ) - 5\/(11/1/ - IZZ) + 4Iyz' (1-68b)
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\
<

(@) (b)
Figure 1-14 Position of principal axes: (d),. < 0 and (b)I. > 0.

The coordinate axeg andz’ are known as thprincipal axesof the cross-section, whereas,
andI..,. are called th@rincipal moments of inertialt follows from Eqgs. (1-63) and (1-67) that

the choices of signs fofin(2¢) implies thatl,,, becomes the larger of the principal moments

of inertia andl., ... is the smaller principal moment of inertia. It is emphasi#eat this choice
is performed merely to have a unique determinatiop.of hree other choices @f are possible
obtained by additional rotations of the magnitudesr and%w relative to the indicated.

If the cross-section has a symmetry line, anditfaxis is placed along this line, thép, = 0.
Hence, a symmetry line is always a principal axis. Since ftircypal axes are orthogonal, the
z-axis is also a principal axis—even if the cross-sectioroissymmetric around the axis.

Example 1.2 Determination of principal axes coordinate system

The cross-section analysed in Example 1.1 is reconsidditeel thin-wall approximation is used, so the

moments of inertia are given by Eq. (I) in Example 1.1 and aégxe here (without the primes):

Iy ~ 233,03 ~ 27738 - ta®, I..~ 92,08 ~ 4.3810 - ta®, I,.~ U 15714 ta®.(a)
84 21 7

The position of the bending centre relatively to the top-tafrner of the cross-section is provided in

Fig. A. From Eq. (a) and Eq. (1-65) follows that

233 - 92 - 2 11 - 2 3 \% 9769
— 24043 — ZZtas — " ta3 = .
J \/( ta 1ta ) +4 ( ta ) ta , (b)

which by insertion into Eq. (1-64) provides:

2-(—%ta®)-28 88

sin(2¢) = — = ~ 0.8903, ¢

(2¢) ta® - /9769 9769 :
(&ms _ QWS) - 28 3780

oy (5 = _ ~ —0.4553. d

(2¢) ta3 - /9769 84 - /9769 o

(continued)
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I i
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Figure A Position of principal axes coordinated system for the thiailed cross-section.

From Egs. (c) and (d) it is found that = 1.0217 radians corresponding tp = 58.5418°. Hence,

¢ € [0, 3] in agreement withl,. = —-ta® < 0.
Finally, the moments of inertia in the principal axes cooaté system follow from Eq. (1-67)e.
3
L. 2\ 84 21 2 84 21 7 1.8124 ta®.

Clearly, 1,4, is greater than any of,, or I.., whereasl,, is smaller than the bending moments of
inertia defined with respect to the originalandz-axes. |

1.4.3 Equations of equilibrium in principal axes coordinat es

From now on it will be assumed that tke, y, ~)-coordinate system forms a principal axes coor-
dinate system with origin at the bending centre. In this cmesystem of differential equations
(1-28) for a Timoshenko beam uncouples into three diffemestibsystems. Thus, the axial
deformation is governed by the equation

d dw
— ([ PA—= e =0, 1-69
dz ( dx > T4 ( )

whereas bending deformation in thedirection is defined by the coupled equations

d (. dj. dw, -

% (EIZE> +GA, (% Z) +m, =0, (1 70a)
d dw,

o (GAy (% - 9)) +q, =0, (1-70b)

where the double indexy on the bending moment of inertia has been replaces by a shugz
y in order to indicate that the principal-axes coordinatesuditised.
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Similarly, the flexural deformations in thedirections are determined by

d do dw

— (BI,=L) - GA. ==+ 1y = 1-71
dx( ydx> G (dx+y>+my 0, ( a)
d dw,

o (GAZ (% + 9y>> +¢.=0, (1-71b)

where again the double index on the bending moment of inkatsabeen replaced by a single
index. As seen from Egs. (1-70) and (1-7{},,6.} and{w,,0,} are still determined by
pairwise coupled ordinary differential equations of theasa order.

For a Bernoulli-Euler beam, the system of ordinary difféi@requations (1-33) uncouples
completely into the following differential equations fdret determination of,,, w, andw.,:

d dw,,

2 (Ea . =0, 1-72
dz < dz ) T =0 ( 3
d? d2wy dm,,

d? d*w, dmy,

Example 1.3 Plane, fixed Timoshenko beam with constant load per unit length

Figure A shows a plane Timoshenko beam of the leagtith constant bending stiffneds, and shear
stiffnessGA,. The beam is fixed at both end-sections and is loaded withstaoiioad;, and a constant
moment loadn.. The displacemeniy, (z), the rotationd. (x), the shear forc€),(x) and the bending
moment are to be determined.

dqy

mfl\/l\/l\/l\/l\/l\/l\/i%/l\/l\

El..,GAy

z

\
8

Figure A Fixed beam with constant load per unit length.

The differential equations for determination«of (z) andd. (x) follow from Eq. (1-70). Thus,

d?0, dwy _ d dwy _
According to Eq. (1-35), the boundary conditions are:
wy(0) =wy(l) =0,  0-(0) =06:(I) =0. (b)

(continued)
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1.4 Uncoupling of axial and bending deformations 27

Integration of the second equation in Eq. (a) provides:

dwy

Qy = GAy (% - Z> = —qyT tC1 ()

Then, the following solution is obtained fég (z) from the first equation in Eq. (a):

d’0. 1 1
EIZW =qyx — (c1 +m2) = EI.0.(x) = quwS — 5(01 + mz)as2 + cox + c3. (d)
Further, the boundary conditiods (0) = 6.(I) = 0 provide
1 5, 1
c3 =0, Cco = —aqyl + 5(01 + m2)l. (e)
Hence, the following reduced form is obtained 6o z):
3 2 2
0.(z) = GEL (qy(z” — 2l®) = 3(c1 + mz)(x” — al)) . )]

Next, Eq. (f) is inserted into Eq. (c) which is subsequemntiegrated with respect to, leading to the
following solution forw, (x):

dw GA,y

3 2 2
GAyd_acy = —qyr+c1+ 6EL (qy(z” — 2l®) = 3(c1 + mz)z” — al)) =

1 GA 1 1
GAywy(z) = _iqywz +acar+es+ 6EIZ (qu(m4 —22%1%) — 5(01 +m.) (22" — 33:21)). (9)

The boundary conditions,, (0) = w, (1) = 0 provide the integration constants

1 1
=0 = —ql— ———m. h
Cq I C1 2Qy (I>y _|_ 1m ) ( )
where
EI, .
b, =12—— i

Then, Eq. (a) and Eq. (f) provide the following solutions:

dy dy 2 2 mz T mz @y 3 2

- - - - - 922% — 3021
wy@) = 5o -2t o =) e — o T " RBEL 3, 1 ) =
— W 2,2 20 LI 3 o2 2 .
wy(z) = 2L (Il —2)*a” 4+ @,1°(l — x)x) 2EL ¢y+1(233 3zl + xl”), 0)

Qy 3 2 2 m. Dy

0. = —2z" — l l — l— . k
(@) = g v —3vi+al) + o g, g~ ()

The non-dimensional paramet@r, is a measure of the influence of the shear deformations. For a
rectangular cross-section with the heighive havel. = Lh*A andA, = 3 A. Then®, becomes

72 h*E
b =5 Ea O
Hence, shear deformations are primarily of importance liortsand high beams. On the other hand, for
long beams with a small height of the cross-section, shdarmations are of little importancég. only
the bending deformation is significant. (continued)
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For Bernoulli-Euler beams we have, = 0, corresponding t6: A, = oo, cf. Egs. (1-16) and (1-27).
Then,®, = 0 and Egs. (j) and (k) reduce to

wy (@) = 5 (1= )%, (m)
0. (z) = 12quI (22° — 3271 + ). (n)

It is remarkable that the distributed moment load does not induce any displacements or rotations in
the considered beam with Bernoulli-Euler kinematics.

The shear forc&), () and bending moment/. (z) follow from Eq. (c), Eqg. (h) and Eq. (k), respec-
tively, i.e.

1 1
Qy(z) = —qur+c1 = EQy(l —2x) — mmz: (0)
_ daz _ qy 2 2 mz (I)y
M.(z) = EI o = 12(63: 6zl +17) + > <I>y+1(l 2x). (p)
For a Bernoulli-Euler beam these results reduce to
1
Qy(x) = §Qy(l —2z) —ms., (@
M. (z) = %(6952 — 6al +1%). )

The constant moment load .. only induces a constant shear force of magnituate. , whereas\z. (x)
is not affected by this load. Especially, for= 0 andz = [, Eq. (0) and Eqg. (p) provide

1 @,

1 1
= — l — 2z M - — l = Zly
Qy(0) gyt —m y(0) o + 2d, + m (s)
Lo _Llop 1 %
Qy(l) = 2(Iyl mz, My(1) = 12‘1yl 2, + 1mzl~ ®
The displacement at the midpoint= /2 follows from Eq. (k):
wy (12) = 2L (1 4 4, )
Y 384E1, v

The first and second terms within the parenthesis specifgah&ibutions from bending and shear, re-
spectively. Again the parametdr, reveals itself as a measure of the relative contributiomfehear
deformations. |

1.5 Normal stresses in beams

For at beam without warping, the normal stress (z, y, z) in terms of the generalised strains
follows from Egs. (1-17), (1-20) and (1-24):

Ops = E(e — Ky + Ky2). (1-73)

In the principal axes coordinate system, whéje= S. = I, = 0, the generalised strains
{e, Ky, K} are related to the conjugated generalised stres¥ed/,,, M} as determined from
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1.6 The principle of virtual forces 29

Egs. (1-45a), (1-45b), (1-46) and (1-47)$r= S, = I, =0, i.e.

N M, M.
A T EL, T EL

€= (1-74)
Insertion of Eq. (1-74) into Egs. (1-19) and (1-24) provittesresult for the axial stress in
terms of the generalised stresses,

M, M,

TVt I—yz (1-75)
z Y

Ogx =

Equation (1-75) is due to Navier, and is therefore referoesiNavier's formula It should be
noticed that Eq. (1-75) presumes that the stresses arelfdedun a principal axes coordinate
system, sal, and I, indicate the principal moments of inertia. The relation &id/ for both
Timoshenko and Bernoulli-Euler beams. This is so becauletba relation (1-15), but not
the relation (1-18) has been utilised. Hence, Eq. (1-75a$2t on the assumption that plane
cross-sections remain plane, but not that they remain gothal to the beam axis.

The so-calletero linespecifies the line in they, z)-plane on whichr,, = 0. The analytical
expression for the zero line becomes

y+ =Lz =0. (1-76)

It is finally noted that warping introduces displacementshi@ axial direction in addition to
those provided by bending. However, if the torsion is honmegeis, these displacements will
not introduce any normal strains and therefore no normassés. Hence, Navier's formula is
also valid in the case of St. Venant torsion, but in the caséasov torsion, or inhomogeneous
torsion, additional terms must be included in Eq. (1-75).

1.6 The principle of virtual forces

In this section th@rinciple of virtual forcess derived for a plane Timoshenko beam of the length
[. The deformation of the beam is taking place in {hey)-plane. In the referential state, the
left end-section is placed at the origin of the coordinatteay and the-axis is placed along the
bending centres of the cross-sections, see Fig. 1-15.

The principle of virtual forces is the dual to tipeinciple of virtual displacementsin the
principle of virtual displacements the actual sectionatés and sectional moments are assumed
to be in equilibrium with the loads and the reaction forcqsliag at the end sections. The virtual
displacements and rotations are considered as arbitrargrents to the actual displacements
and they only need to fulfil homogeneous kinematic boundangitions, so that the combined
field made up by the actual and the virtual fields always futfis actual non-homogeneous
boundary conditions as given by Eq. (1-35). Further, theegdised virtual strains defining the
internal virtual work must be derived from the virtual diapément and rotation fields.

In contrast, the principle of virtual forces presumes thatdisplacements and rotations of the
beam are fulfilling the kinematic boundary conditions, anat the generalised internal strains
are compatible to these fields. The actual loads on the beasugerimposed with the virtual
incremental loads per unit lengtly, anddg,, the virtual moment load per unit lengthn .,
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Figure 1-15 Virtual internal and external forces.

the virtual reaction forcesN,; andé@Q,, ; along thex- andy-directions, and the virtual reaction
moments M., in the z- d|rect|ons wherg = 1 andj = 2 indicate the left and right end-sections,
respectively. Due to the load increments, the internai@e¢brces and section moment achieve
incrementss N, 4@, anddM., see Fig. 1-15. These variational fields are assumed to be in
equilibrium with the variational load field%y, , d¢, andém., and to comply with the variations

N;,0Q,,; anddM. ; of the reaction forces and reaction moments. In what foll@as, 6Q),,
andoM will be referred to as the virtual internal forces, wheréas, dq,, dm., dN;, 6Q, ;
andiM. ; are called the virtual external forces.

The starting point is taken in the kinematical conditionsvided by Egs. (1-12) and (1-17)

and rewritten in the form

dw dw do
f _e= 0 —v _ z — Yxz — 0 z
dr ’ dz " ’ dz

The virtual internal forces are related to the virtual exé¢doads per unit lengthg,, g, and
om., via the following equations of equilibrium, cf. Egs. (1—4eid (1-4b):

(5Qy)

— k. =0. (1-77)

d(5N)
dz

d(6 M)
dxr

+ gy +dg, =0, +0Qy + dm., = 0. (1-78)

The first equation in Eq. (1-78) is multiplied withV (x), the second equation is multiplied
with §Q, (x), and the third equation with}/ (z). Next, the equations are integrated fram= 0
to x = [, and the three resulting equations are added, leading idehéty

!
dw,, dw, de. B
[ fov () v, (B0 ) v ()| wmo oo

Integration by parts is carried out on the first terms withia innermost parentheses, leading to

L(d(N) d(6Q,) d(6M)
_/O (wa—i— W, + S Gz—éQy9z>dm

l

{6Nww +0Qywy + 5MZQZ]
0

l
= / (51\75 +0Qy - Yay + OM., - Hz> da. (1-80)
0

DCE Lecture Notes No. 23



1.6 The principle of virtual forces 31

Upon utilisation of Eq. (1-78), this is reduced to

1 l
[5N-wz+5Qy-wy+5Mz-oz]o+/ (60 - ws + 8, - w, + om. - 0. ) du
0
l
- / (6N-€—|—6Qy-%y—|—6Mz-/<Z)dx. (1-81)
0

The generalised strains on the right-hand side of Eq. (1la&l)ow expressed in mechanical
quantities by means of Eq. (1-74). Furth&, 6@, andd)/, fulfil the following boundary
conditions att = 0 andx = [, cf. Fig. 1-15,

SN(0)= —6N1,  8Qy(0) = —0Qy1,  SM.(0) = —3M.,, (1-82a)

SN(I)= 6Ny, 0Qy(1)= 0Quo,  OM.(I)= 6M..,. (1-82b)

Equation (1-81) then obtains the following final form:

!
Z (6NJ' “Wg,j + 0Qy,; - wy,; + M ;- 9271‘) + / (5% “Wy + 0qy - wy + oM - ez)d«r
0

j=1

l
B SN-N  6Q,-Q, OM, M,
_/0( FA oA, I dz, (1-83)

wherew, ;, w, ; andé. ; denote the displacements in theandy-directions and the rotation
in the z-direction at the end-sections, respectively. Equatief88) represents the principle of
virtual forces. The left- and right-hand sides represeatakternal and internal virtual work,
respectively.

The use of Eq. (1-83) in determining the displacements atadioos of a Timoshenko beam
is demonstrated in Examples 1.4 and 1.5 below. Furtherrttwgrinciple of virtual forces may
be used to derive a stiffness matrix for a Timoshenko beamegi¢ as shown later.

Example 1.4 End-displacement of cantilevered beam loaded with a force at the free end

Figure A shows a plane Timoshenko beam of the lehgtith constant axial stiffnes& A, shear stiffness
G A, and bending stiffnesB'1.. The beam is fixed at the left end-section and free at the eigtitsection,
where it is loaded with a concentrated foiQg 2 in the y-direction. The displacement, - at the free
end is searched.

The principle of virtual forces Eq. (1-83) is applied wittetfollowing external virtual loadsdq, =
5qy =dm. =0,IN; = 5Qy,1 = 5MZ71 =Ny = (SMz,z =0 and(Snyz = 1. FurtherN(a:) = 0.
Then, Eq. (1-83) reduces to

1 (6Qy-Qy | SM. - M.
l-wy,z—/o( GA, + EL )dm. @)

(continued)
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Qy,Q 6Qy,2 =1
EA GAy,EI,

2 > T R > T

l l
\ Y
Yy Yy
M. 6M
R 1@
Qy 0Qy
Qy.2 ® 1 ®

Figure A Fixed plane Timoshenko beam loaded with a concentrate@ farthe free end: Actual force and section
forces (left) and virtual force and section forces (right).

The variation of the bending momef. (x) and the shear foro@, (z) from the actual load), » has
been shown in Fig. A on the left. The corresponding variaionoment field M. (z) and shear force
0Qy(x) from 6Q,,2 = 1 are shown in Fig. A on the right. Insertion of these distritng in Eq. (b)
provides the solution

_Qyal | 1Qyel®

i(4+¢)‘M (b)
T GA, 3 FEI. 12 v EIL

Wy, 2

where®, is given by Eg. (i) in Example 1.3. The deformation contribng from shear and bending
are additive. This is a consequence of the additive natutbeoflexibilities indicated by Eq. (1-83)
in contribution to the fact that the beam is statically deti@ate, which provides the field®/. (x) and
Qy(z) aswellasy M. (x) anddQ, (x) directly. O

Example 1.5 End-deformations of fixed beam loaded with a moment at the free end

The beam described in Example 1.4 is considered again. Hmweow the free end is loaded with a
concentrated moment/. .. The displacementv, > and the rotatior9. » of the end-section is to be
found.

At the determination ofv, 2 from M. o, the principle of virtual forces given by Eq. (1-83) is again
applied with6@,,2 = 1 and all other external variational loads equal to zero, ifeado Eq. (a) in
Example 1.4. Howevei)/. (z) andQ,(z) are now caused by/. », and are given as shown in Fig. A,
whereasiM. (z) anddéQ, (x) are as shown in Fig. A of Example 1.4. Them, > becomes

ol M. 2
(Sluz . fwz 1 2l
o = T TPy = 20 a
Wy, 2 /0 i T > 7 (@)

(continued)
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EA,GAy, EL
R |> > T |> >
» ]\JZ,Z ol 6Mz,2 =1
l l
Y Y

M, oM.

M. » ® 1 ®
Qy=0 0Qy =0

Figure A Fixed plane Timoshenko beam loaded with a moment at the frée &ctual moment and section forces
(left) and virtual moment and section forces (right).

At the determination of). o the principle of virtual forces Eq. (1-83) is applied wittetfollowing
external virtual load$gq, = dgy, = om. = 0, IN1 = 0Qy1 = dM.1 = N2 = 6Qy,2 = 0 and
0M. > = 1. Then, Eq. (1-83) reduces to

T 0QyQy | SM. - M.
1.92,2,./0< T )dz:. (b)

The variation ofQ, (z) and M. (x) from M, » has been shown in Fig. A on the left, and the variation of
0Qy(x) andd M. (x) from 6 M. » = 1is shown in Fig. A on the right. Thefl. > becomes

1
1-M, M. 5l
2 dx = 2

0.0 = = .
2= ), EL EL

(©

In the present load case, the shear force is giveR.#4s:) = 0. Consequently it will not induce any
contributions in Eq. (a) and Eg. (c). |

1.7 Elastic beam elements

When frame structures consisting of multiple beams are tar#dysed, the establishment of
analytical solutions is not straightforward and insteadimarical solution must be carried out.
For this purpose, a discretization of the frame structute anumber of so-calledeam ele-
mentsis necessary, eventually leading tdigite-element modelThe aim of the present section
is not to provide a full introduction to the finite-elementtimed for the analysis of frame struc-
tures,e.g.tower blocks with a steel frame as the load-carrying stmecttdowever, a formula-
tion is given for a single beam element to be applied in su@iyars. Both the Timoshenko
and Bernoulli-Euler beam theories are discussed in thisezgnand plane as well as three-
dimensional beams are touched upon.
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1.7.1 A plane Timoshenko beam element

Firstly, the stiffness matrix and element load vector is\iel for a plane Timoshenko beam ele-
ment with constant axial stiffnedsA, shear stiffnes& A, and bending stiffness ., cf. Fig. 1—-
16. The stiffness relation is described in@ny)-coordinate system with origin at the left end-
section and the-axis along the bending centres.

Mo 1\§ EA,GA,, EL
0z Noywg 2
( 2 . P T

N1, wz 1
Mz,2:9z,2
Qy 1, Wy, 1 Qy,27wy,2

A\
Yy

Figure 1-16 Plane Timoshenko beam element with definition of degreeseetiom and nodal reaction forces.

At the end-nodes, nodal reaction forgésand@),, ; are acting along the- andy-directions,
respectively, and reaction momeits, ; are applied around the-axis. Here,j = 1 andj = 2
stand for the left-end and right-end nodes of the beam elemespectively, and the reaction
forces and moments are in equilibrium with the remainingedl loads on the element for
arbitrary deformations of the beam.

The element has 6 degrees of freedom defining the displadsraed rotations of the end-
sections, cf. Fig. 1-16. These are organised in the colurctore
]T

We = |: Wel :| = [ Wy, 1 Wy,1 02,1 Wg,2  Wy2 9z,2 (1_84)

We2
The sub-vectow, ; defines the degrees of freedom related to element pode
Similarly, the reaction forced’;, @, ; andM, ;, j = 1,2, at the end-sections, work conju-
gated tow, ;, w, ; andd, ;, are stored in the column vector

re = [ ;:; } =[N Qy1 M.1 Ny Qu2 M.o ]T (1-85)
v EEEEREEEEEA -
N2
( l M: 2
Qy, 1 Qy,2
y

Figure 1-17 External loads and reaction forces from external loads darsegbeam element.

The equilibrium of the beam element relating the nodal ieadorces to the degrees of
freedom of the element may be derived by the principle otigirtlisplacements as demonstrated
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in a subsequent paper. The resulting equilibrium equatomaatrix form may be written on the
form

re = Kewe + fe. (1-86)

The vectorf, in Eq. (1-86) represents the nodal reaction forces fromttereal element loads
whenw, = 0, i.e.when the beam is fixed at both ends as shown in Fig. 1-17. Wernsbedly
consider constant element loaglsandg, per unit length in the:- andy-directions, and a con-
stant moment load per unit length, in the z-direction, see Fig. 1-17. The reaction forces and
reaction moments follow from Egs. (s) and (t) in Example 1.3:
_%le

—3qyl + mz
P | 12 Bhl® 535 +1mzl (1-87)
° —54ql '

qyl —m;
l2 1 Py

23,1

121/

ml

The matrixK, in Eq. (1-86) denotes the stiffness matrix in the Iqealy, z)-coordinate system.
Letw, denote théth component ofv.. Then, theth column inK, represents the nodal reaction
forces forfe = 0, and withw; = 1 andw; = 0,j # i. These forces are obtained following
the derivations in Example 1.3 from Eq. (a) to Eq. (t) wjth= m. = 0 and with the boundary
condition in Eq. (b) replaced by the indicated conditionsc&use of the symmetry of the prob-
lem, only two such analyses need to be performed. Still,ishasrather tedious approach. Partly
because of this, and partly in order to demonstrate an aligenapproach, the stiffness matrix
will be derived based on the principle of virtual forces.

Undeformed state Undeformed state

(@ (b)
Figure 1-18 Rigid-body modes of a plane beam element: (a) Translatidn(larotation.

The beam element has 6 degrees of freedom, by which a totdirefdd independent modes
of deformation may be defined. These consist of 3 linear iaddpnt rigid body modes and
3 linear independent elastic modes. The rigid modes may beechas a translation in the
x-direction, a translation in thg-direction and a rotation around thedirection as shown in
Fig. 1-18. Any rigid body motion of the beam element may baiigid as a linear combination
of these component modes of deformation. Obviously, thd bgdy motions do not introduce
stresses in the beam. Hence, the axial fa¥cehe shear forc€), and the bending moment’,
are all zero during such motions.

Since, axial elongations are uncoupled from bending dedtioms, the elastic elongation
mode is uniquely defined as shown in Fig. 1-19a. The two bgndifiormation modes may be
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Figure 1-19 Elastic modes and related section forces in a plane beanerterta) Axial elongation; (b) symmetric
bending and (c) antisymmetric bending.

chosen in arbitrarily many ways. Typically, these are chdseprescribing an angle of rotation

at the other end-section. Following an idea by Krenk (20@I)pre convenient formulation may

be obtained by choice of two bending modes symmetric anesgntimetric around the mid-point

of the beam element as shown in Figs. 1-19b and 1-19c. Itdheuhoticed that these modes
also apply if the material properties of the beam are not sgtrioal around the mid-point.

The axial elongation and conjugated axial force relatedh¢oetxial elongation mode are de-
notedu, and Ny, respectively. The symmetric and anti-symmetric bendiogi@es are described
by the end-section rotatiofs andf,, defined in Figs. 1-19b and 1-19c, respectively. The con-
jugated moments are denotédl, and M, respectively. The related distributions of the shear
force @, (z) and the bending moment, (x) are shown in Figs. 1-19b and 1-19c.

The shear force is equal 9, = 0 in symmetric bending, because the bending moment is
constant. Then, no shear deformations are related to thiemmn contrast, a constant shear
force appears in the anti-symmetric bending mode. Heneeddfiormations occurring in this
mode are affected by bending as well as shear contributions.

At first the constitutive relations between the deformatiseasures and the conjugated gen-
eralised strains for the indicated elastic modes are foynoh&ans of the principle of virtual
forces Eq. (1-83). In all cases, the beam element is unloadég, = dg, = dm. = 0. For the
axial elongation mod&' = Ny, Q, = M, = 0, anddN = 1, 6Ny = —1, N3 = 1. Further,
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Wyl = —SUo, Wa2 = SUg, wy,; = 0. ; = 0. Then, Eq. (1-83) reduces to

1 1 1N Ddx l
—1)-(—= 1= = d = N, — = —N. 1-88
(1) (=guo) +1-quo = | —pmmde = w0 =No | 7 = 5o (1-88)

The last statement holds for a beam element with constaal stffnessFE A. If E A varies, the
integral in the middlemost statement must be evaluated/acaly or numerically.
For the symmetric bending modé = @, = 0, M, = —M,, 6M, = —1,0M.; = 1, and
O0M. o = —1. Furtherf, = 6,, 0, 2 = —0, andw, ; = w, ; = 0. Then, Eq. (1-83) provides
F(=1)(=My)

l
dx l
1.95+—1-—98:/7dx = 29S=Ms-/—=—Ms. (1-89)
(=1) - (=0s) . EL o EI.  EL

Again, the last statement only applies for a homogeneous behereas the middlemost state-
ment applies for any variation of the bending stiffné&s along the beam.

For the anti-symmetric bending modeé = 0, @, = 2=, M. (z) = (-1 + 2z/l)M,, and
0Qy = 20M,(x)/l = (=1 + 2z/1). Further,,1 = 04,052 = 0,,w, ; = w,; = 0. Then,
Eq. (1-83) provides

I /2. 2M T z
2. 20 (14 22)(—1+22)M,
1-9a+1-9a=/ (Z ! Al ) >dm =
0

GA, EL
4 (1 dx P(—1+2%)2
29(1 = Ma (l—2 o GAy +/() 7EIZ dx =
1 1 1 1 1 El,
20, = M, <4ZGA—yl2 + gE—Iy> = §E—Iy(1 + (Py)Ma, (I)y = 12GAyl2 (1—90)

As discussed in Example 1.3, the non-dimensional paranbgtéefines the contribution of shear
flexibility relatively to the bending flexibility.

The flexibility relations provided by Egs. (1-88), (1-89da{1—90) may be written in the
following equivalent stiffness matrix formulation:

ro = Kowo, (1-91)
where
No uo g0 0
ro=| M, |, wo=|20,|, Ky=| 0 £ 0 . (1-92)
M, [ 20, ] [ 0 0 ﬁ’ﬂ“{z ]

The nodal reaction forcag andrq in Eq. (1-85) and Eq. (1-92) are related via the transfor-
mation

e = SI‘O = SK()W(), (1—93)
where
—1 0 0

0 0 2/

0 1 1
S = 1 0 0 (1-94)

0 0 -2/

0 -1 1

Elastic Beams in Three Dimensions



38 Chapter 1 — Beams in three dimensions

Similarly, the elastic deformation measures storedvincan be expressed by the degrees of
freedom of the element storedw, as follows (see Fig. 1-20):

Uy = Wy,2 — W1, (1-95)
9,271 = ea + 95 + %(wy,Q - wy,l) 29 = ez 1+ ez 2 — (wy 2 — wy71)
- (1-96)
9,272 = ea - 95 + %(wy,Q - wy,l) 293 = 9,271 - 9z,2~
Wy, 1

Oq — 05

Figure 1-20 Connection between elastic deformation measures and elefegrees of freedom.
Equations (1-95) and (1-96) may be rewritten in the commaumixrfarm
wo = STwe, (1-97)

whereS is given by Eq. (1-94). Insertion of Eq. (1-97) into Eq. (1)}pBvides upon compari-
son with Eq. (1-86):

re = SKoSTw, = K. = SK(ST. (1-98)

Insertion of Ky andS as given by Eq. (1-92) and Eq. (1-94) provides the followirplieit
solution forKe:

rAL2 0 0 —Al2 0 0 1
Hl—; Hq)ll 0 H%I 1+@Iz
B B e L= o)
B —A2 0 0 Al? 0 0
0 H%I 1+(I)Iz 0 H%I H(I)Il
| 0 5L f+$yll2 0 -5 Ll ﬁiuﬂ |

The corresponding result for a plane Bernoulli-Euler bed@ment is obtained simply by
setting®, = 0. The equivalent element relations for a three-dimensibaam formulated in a
(z,y,z) principal axes coordinate system are given in the nextaecti
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1.7 Elastic beam elements 39

Example 1.6 Deformations of a plane Timoshenko beam structure

Figure A shows a plane beam structut&C' consisting of two Timoshenko beam elemerit® and
BC of the lengthd andi/2, respectively. The loads on the structure and the resullisglacements are
described in the indicate@:, y)-coordinate system. The shear stiffnésd, and the bending stiffness
EI. are constant and the same in both beam elements. The strigfixed at point4, free at pointC,
and simply supported at poiit. Both beam elements are loaded with a constant load peramythg, .
Additionally, beamBC' is loaded with a concentrated lo&y = ¢, ! at the free end’.

ay Py:‘Iyl\
P | A . . . A . . . A . . .
\/@ —_
A ©) B é§ @ c
| GAy, EL
l ! 1/2
y

Figure A Plane Timoshenko beam structure consisting of two beamegiam

We want to determine the displacement of paintin the y-direction, and the reaction forces and
moments at the support pointsand B. The calculations are performed with the shear stiffnessrgas

GA, = 120E12[Z. (@)

We shall refer to the beam elememts3 and BC' with the indexe = 1 ande = 2, respectively. With
reference to Eq. (i) in Example 1.3, the shear flexibilitygmaeters for the two beam elements become:

12FE1, 12FE1,
=——=0.1 Ppo=——— =04 b
VLT GALR 0.1, V2T GA,(1)2)? 0 ()
61, My 62 02 03
Y Y Yt Y
[ | [ |
[ g los o @ |

o lo

Figure B Global degrees of freedom and reaction forces in the plam®3henko beam structure.

Since, the axial deformations are disregarded, each etdmer degrees of freedom out of which two
are common, namely the displacement and rotation at poifithB.related global degrees of freedom
have been defined in Fig. B. The element stiffness matridesMfdrom Eq. (1-99) and Eq. (b):

12 6l —-12 6l 12 3l —-12 3l
K. = EL| ol 417 -6l 1.9° K, — SEL| 38l L1 =31 047
LS5 —12 el 12 -6 |7 2T Iap| —12 -3 12 -3 ©
-6l 1.9 —61  4.117 31 041> =31 1.17

(continued)
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40 Chapter 1 — Beams in three dimensions

The corresponding element loads become, cf. Eq. (1-87):

_1%%12 6 —1%qy .zéz 12
— 154yl 1 l —130y(3) 1 l
f1 = 1 = ——qqyl fa = 12 2 = ——qyl . d
1 :%qvé 12% 6 | 2 _élqyé ?’fy 48<Iy 60 (d)
5! =l 5q(3) =l

The global equilibrium equation, made up of contributiomsf both elements, has the structure

r=Kw-+f, (e)
where
r Bl Ql w1 r hl 24
| r1 | M, 01 | f1 | 41
I e | w HiEE S 36
= L‘ g | - 0 » W= 0o , f= L| g ‘ B 48qyl -3l (M
| ra | 0 w3 | f2 | 60
L J 0 03 L J l
r ml
| Ki |
U I
L | |
| K2 |
L 4
2 6 2 6
% ﬁl —11_—1 Hl 0 0
SR = 0 -l et 0 0
| koS el cehan, e 2y ©
I A v Gl ) M € ol v ) A o LA e L
0 0 %6 LY R —
4 1 1.4 1.
0 0 %l %142 —2 Zj;—ifz

The details in the derivation of the matrix equation Eq.i@luding the formation of the column vectors
r andf and the global stiffness matriK by adding contribution from element components, will be
explained in a later chapter.

The displacement degrees of freedemandw; at the nodest andC are both equal to zero. Similarly,
the rotatiord; at the fixed support atl is zero. When these values are introduced iy Eq. (e) provides
the values of the reaction compone@ts, M1 andQ- if the remaining unconstrained degrees of freedom
02, w3 and 3 are inserted. These are determined from the correspondjnagtiens in Eq. (e) using
wy = 01 = we = 0, leading to

pr [ Gpbr -f e 0 3] 0
= el g 1l ws | =gl | 60 | =)0 | =
827 —A 8y 0 1 0
021 ja [ 0.1453
051 = | 0.2912

Insertion of Eq. (h) along withv; = 61 = w2 = 0 into the remaining equation (e) provides the
following solution for the reaction componer@s , M; and@Q-: (continued)
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@ 7l 0 0 4 [ 0.1453/1 2

My | =5 i 0o o |-%L | onom |-Loula| =
¥ _6h a9 24 EL 48

Q2 S+ -& A 0.2912/1 36

Q1l 0.2927

M, | =¢ql°| 01677 |. 0

02l —2.7927

In case of Bernoulli-Euler kinematics, correspondingbtnp = ®,2 = 0, the corresponding solutions
become:

[ 0.1 i [ 01354

w3 ] - ({E—I 0.1172 ] 0
| 021 | 0.2812
[ Qil [ 0.3125

M, | =q,l*| 0.1875 (k)
| Qal | —2.8125

Comparison of Egs. (h) and (j) reveals that the displacemgnas well as the rotationg, and6s
are increased by the shear flexibility. This is so becausedibgrand shear deformations in general are
coupled for statical indeterminate structures. At the séime, a comparison of Egs. (i) and (k) shows
that Bernoulli-Euler beam kinematics lead to higher ses$ban Timoshenko beam theory, which is due
to the fact that the shear stiffness in the Bernoulli-Euksarh is infinite. O

1.7.2 A three-dimensional Timoshenko beam element

The formulation of the beam-element stiffness matrix is mevended to three dimensions. This
involves flexural displacements in two directions, axiapcements and, in addition to this,
twist of the beam. It is assumed that the beam element igyhktradf the lengthl and with
constant cross-section. The element relation is desciibagrincipal axesz, y, z)-coordinate
system with origin at the left end-section and thaxis placed along the bending centres of the
cross-sections. Only St. Venant torsion is taken into a®rsition. The axial stiffnesg A, the
shear stiffnesse& A, andG A, in the y- and z-directions, respectively, the torsional stiffness
GK, and the principal inertial bending stiffnesse$, and £'1, around they- andz-axes are all
constant along the beam element.

The degrees of freedom of the element are made up by the 6 cam{s,, ;, w,,; andw, ;,
Jj = 1,2, providing the displacements of the bending centres, aadtbomponents, ;, 6, ;
andd. ; defining the rotation of the end-sections. Agajn= 1 and;j = 2 refer to the left and
right end-sections, respectively. The nodal reactiondsrwonjugated to the indicated degrees
of freedom consist of the axial forc&g, ; and Q. ; in the y- and z-directions, respectively,
the torsional momenta/, ; and the bending moment componeffs ; and}. ; in they- and
z-directions. Finally, the element loadings consist of ¢ansloads per unit lengtfiy,, g, -}
and constant moment loads per unit lendth,, m,, m.} in the z-, y- and z-directions. No
concentrated element forces or moments are considered.lo@tisg, andg. as well as the
shear forceg), ; and@. ; are assumed to act through the so-cafibdar centrgleading to an
uncoupling of the flexural and torsional deformations. Tleéndtion of the shear centre and
further details about uncoupling of torsional and flexuiapthcements are given in Chapter 2.

Elastic Beams in Three Dimensions



42 Chapter 1 — Beams in three dimensions

Gz
—_— > > ——— ——— ——— ——» B —
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Figure 1-21 Three-dimensional Timoshenko beam element with defindfaegrees of freedom, nodal reaction forces,
element loads and sectional properties.

The element equilibrium equations may be expressed on théxfam, cf. Eq. (1-86),
re = Kewe + fo (1-100)

Here,ro andw, are 12-dimensional column vectors storing the reactiooeg®and the element
degrees of freedom, respectively, cf. Egs. (1-84) and (-85

Ny Wy, 1

QyJ Wy, 1

Qz,l Wz,1

]\/[Ll 01,1

Myal 9y71

ey A{ZJ We1 equ
re = - 1 o= —| 72| 1-101
[ ey } N v [ Weo } Wy,2 ( )

Qy,Z Wy,2

QZ,Q Wz,2

]\/[LZ 01,2

Mya2 9y72

L ‘Zu-zﬁ | L 9,272

Likewise, f, is 12-dimensional column vector storing the contributiemshe reaction forces
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from the element loads, given as, cf. Eq. (1-87),

I _%qzl
_lqyl +m,
—54:l —my
—Llm.1
2m%<I>
1,2 1 @,
50073 1E<1>zmyl
1 2 1 y
f —i5qyl” — 1Ml
fe - |: fel :| = 12 _l2 1l+ Y ) (1_102)
e2 . 59z
__le —my
=54l +my
1
—=myl
1921 @,
—ﬁqzl — §1Eq>zmyl
1 1
L ﬁqul2 5 T, Ml

where®, and®, are given as, cf. Eq. (i) in Example 1.3,

EL EI,

P, =12——— O, =12 1-103
Y GA, 2’ GA_I? ( )
Finally, K. specifies the element stiffness given as, cf. Eq. (1-99),
A 0 0 0 0 -EA 9 0 0 0 0
0 ki, O 0 0 s 0 iz 0 0 0 4
0 0 kK, o0 kK, 0 0 0 Ky 0 Kk, 0
o 0o o0 €% o o o o0 0-¢ 0 o0
0 0 Kk, 0 k) 0O 0 0 k& 0 K 0
0 kj 0 0 0 k3 0 k3 0 0 0 k3
K. = , 12 22 ” 23 24 , (1_104)
cT -2 0o o o o0 o0 £ 0 0o o0 o0 o0
0 ki3 O 0 0 k53 0 k33 O 0 0 k3
0 0 Ky 0 ks 0 0 0 Ky 0 kY 0
o 0 0-¢% 0 o0 0 0 0 £ o0 o0
0O 0 K, 0 kK, 0 0 0 K, 0 k4, 0
. 0 s 0 0 0 k3, 0 k3 O 0 0 ki |
where
[ ki ki ki ki ] [ 12 6l —12 6l
k3o kis k3 ElL (44 0,)12 —61 (2— D)2
=TT a2 1-105
K3z k3 1+ ®,)12 12 —6l > ( )
L ks | i (4+ @)1 |
[ kY kYo ks ki ] [ 12 —6/ —12 —6l
kyo kiy kS, El, 4+®,)2 6 (2—®,)0°
=TT . (1-106
Ky Ky |~ T+ 2.0 12 61 (1-106)
i kig | i (4+®,)0 |
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The element equilibrium relation provided by Eq. (1-100gwmes that only St. Venant
torsion is taken into consideration, corresponding to ¢ginsional equilibrium equations

Moy ] GK[ 1 1[0, 1 1
The torsional constank’ is determined in the next chapter. It will be shown that thedlision
of Vlasov torsion requires the introduction of two extra ckgs of freedom‘l% and d?;;’?.
The conjugated generalised stresses are the so-calledngints. Hence, a Timoshenko beam

element, where both St. Venant and Vlasov torsion are takerconsideration, is described by
a total of 14 degrees of freedom.

1.8 Summary

In this chapter, the basic theory of Timoshenko and Berir&iuller beams in three-dimensional
space has been presented. Some of the main topics covermtharearised below.

Beams are one-dimensional structures that may carry loads irttireensions including axial
forces, shear forces in two orthogonal directions and masmmound three directions.

Bernoulli-Euler beam kinematicsassume that cross-sections remain orthogonal to the beam
axis during deformation. Hence, no shear deformation @ccur

Timoshenko beam kinematicinclude shear flexibility, but still a cross-section rensapiane
during deformation. Hence, shear strains and stressesaregeneous over the beam height.

The bending centreof a beam cross-section is defined as the point of attack okih farce
not producing a bending moment.

The principal axesof a beam cross-section are defined as the axes around whiehdin
moment will neither produce an axial force nor flexural diggiments in the other direction.

The principle of virtual forces can by applied to the analysis of deformations in a beam.dn th
case of Timoshenko beam theory, both shear and bendingiation occurs, whereas only
bending deformation is present in a Bernoulli-Euler beam.

Plane beam elementdave six degrees of freedom with three at either émdiwo displace-
ments and one in-plane rotation. In the general case, thgons and the axial displacements
are coupled, but in a principle-axes description, they brexancoupled.

Spatial beam elementave 12 degrees of freedom, that is three displacementeael ota-
tions at either end. Generally, the displacements andootare coupled, but an uncoupling
can be achieved by a proper choice of coordinate system.

Thus, a detailed description has been given of the latetsilexural deformations in a beam.
However, in this chapter only a brief introduction has beremto twist and torsion of a beam.
A thorough explanation and analysis of these phenomen&wilhe focus of the next chapter.
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CHAPTER 2
Shear stresses in beams due to

torsion and bending

In this chapter, a theoretical explanation is given for theas forces in beams stemming from
bending as well as torsion. In this regard, the coupling ofitm and bending is discussed, and
the so-called shear centre is introduced. The derivationg@nfined to homogeneous torsion, or
St. Venant torsion. Later, the strains and stresses providiane case of non-homogeneous torsion,
or Vlasov torsion, will be dealt with.

2.1 Introduction

When the beam is exposed to the loads per unit leqgtndg., the beam will generally deform
with bending deformation§u,, 6, } and{u., 6, }, respectively. Depending on the line of action
of these loads, the bending deformations will be combinet witorsional rotatiord,, around
thez-axis as illustrated in Fig. 2—1a and Fig. 2—1c. Under certanditions, the bending of the
beam is not associated with a torsional deformation. Thigphas if the loads per unit length
gy andg., the reaction forces at the ends of the beam as well as thefshees(, and@ . are
acting through a special poist known as theshear centreas illustrated in Fig. 2—1b.

When this is the case, torsion is caused solely by the moroadtit,. per unit length, which
in part includes contributions from the translatiomgfindg. to S. These torsional deformations
take place without bending deformation as illustrated i B-1d. Hence, bending and torsion
can be analysed independently.

The position of the shear centre depends on the geometrg aftiss-section and is generally
different from the position of the bending centi However, for double-symmetric cross-
sections, the positions of the bending and torsion centilesaincide.

The shear force§, and@. as well as the torsional moment, bring about shear stresses
0.y ando,. on the beam section. In what follows these will be determineépendently for
the two deformation mechanisms. Hengg,andgq. are presumed to be referred to the shear
centre. The shear stresses caused by the torsional mdmeate statically equivalent to the
shear forces), = (). = 0. The position of the shear centre has no influence on theliton
of shear stresses in this case.

Likewise, in the decoupled bending problem, in which thessrsection is exposed to the
shear forces), and(@)., the position of the shear centre is determined from theireoent
that the resulting shear stresses are statically equiMaén, and()., and produce the torsional
momentM/,, = 0 aroundsS.
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46 Chapter 2 — Shear stresses in beams due to torsion and bending
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Figure 2-1 Coupled and uncoupled bending and torsion. Coupling existases (a) and (c), whereas cases (b) and (d)
involve no coupling.

2.2 Homogeneous torsion (St. Venant torsion)

Itis assumed that the torsional moméit and the incremental twist per unit length, /dz and
the warping of the cross-sections remain unchanged alengeghm. Then all cross-sections of
the beam are exposed to the same distribution of the sheass® ., ando,.. For this reason,
this case is referred to d@®mogeneous torsionSince the solution of the problem was given
by St. Venant (ref.), the case is also calld Venant torsioninhomogeneous torsion refers to
the case, where eithér,, or the material properties vary along the beam. Tty dx or the
warping will vary as well.

Figure 2—2a shows a cross-section of a cylindrical beameofghgthi. The cross-sectional
area isA. The curve along the outer periphery is denolgd The cross-section may have a
numberN of holes determined by the boundary cur¥gs j = 1,2,..., N. At the boundary
curves arc-length coordinates, si, ..., sy are defined. The arc-length coordinatealong
I'y is orientated in the anti clock-wise direction, whereasss, ..., sy, related to the interior
boundarie§’;,I's, ..., 'y, are orientated in the clock-wise direction. The outwardated unit
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2.2 Homogeneous torsion (St. Venant torsion) 47

(@) y (b)

Figure 2—2 Cross-section with holes: (a) Interior and exterior edde$;definition of local(xz, n;, s;)-coordinate
systems.

vector on a point of the exterior or interior boundarigsis denotedh;, j = 0,1,...,N. The
unit tangential vector to a boundary curve is denatednd is co-directional to the arc-length
coordinates;, see Fig. 2-2b. Thus, a loc@t, n;, s;)-coordinate system may be defined with
the base unit vectord, n;, s; }. The indicated orientation of the exterior and interior-emegth
coordinatess;, j = 0,1,..., N, insures that the related, n;, s;)-coordinate system forms a
right-hand coordinate system.

The beam material is assumed to be homogeneous, isotropar lelastic with the shear
modulusG. In homogeneous torsion, only shear stresses are presenmliicth reasorG is the
only needed elasticity constant.

2.2.1 Basic assumptions

For convenience the indexis omitted on the twist,. (the rotation angle around theaxis),
i.e.0 ~ 0,. Figure 2—-3 shows a differential beam element of the ledgthBoth end-sections
of the element are exposed to the torsional moment so the element is automatically in
equilibrium. On the left and right end-sections the twists aandd + df, respectively. The
incrementd may be written as

de
df = —dx. (2-1)
dx
SinceM, and the material properties are the same in all cross-secitié/dz must be constant
along the beam. Further, the warping must be the same incsesections,e. v, = u,(y, 2).
This implies that the warping in homogeneous torsion doé#dloice normal straing.e.

Oy,

Exx = Oz

In turn this means that the normal stress becomgs= Fe,, = 0. Hence, only the shear
stresses,, ando,. are present on a cross-section in homogeneous torsion.

= 0. (2-2)
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0+ do z

> ~

Figure 2-3 Beam and differential beam element subjected to homogsrteasion.

The only deformation measure of the problem is the twist igratdd /dx. Then, due to the
linearity assumptions, the torsional momeut must depend linearly odf/dx. Further,o,,
ando . (and hencel/,) depend linearly oid=. This implies the following relation:

MI:GKd—(9

- (2-3)

The proportionality constank™ with the dimension [unit of lengtA]is denoted theorsional
constant The determination of this constant is a part of the solutibtine torsion problem.

2.2.2 Solution of the homogeneous torsion problem

As for all beam theories, the shape of the cross-sectionsisnasd to be preserved during the
deformation. Then, the displacements in thyez)-plane are caused merely by the rotatébn
around the shear centfe The warping displacements must also be linearly dependent on the
strain measuréd/dx, corresponding to the last termin Eq. (1-13). This impliesdisplacement
components

do
Uy = ux(y7 Z) = w(y7 Z)%7 Uy = _(Z - z5)97 Uy = (y - ys)9 (2_4)

Herew(y, ) is the so-calledvarping functioras discussed in Section 1.2.2, and its determination
constitutes the basic part of the solution of the homogesigmrsion problem.

Similarly to Eq. (1-14), it follows from Eq. (2—4) that theroponents of the strain tensor
become:

ou
Eyy = 3—;

Oy
Exx =
ox

_ Ou,

=0
’ 0z

=0, €2z =0, (2-5a)
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1 (0u,  Ou, _ 1 B 3
€yz—§(g+ay>—2( 9+9)—0, (2 5b)

1 [(Ouy | Ouy\ 1 [0w do
%y—i(ay+%>—5<@‘<Z‘%)>@v (2-5¢)

1 (Ou,  Ou,\ 1 /[0w do
€m_§(8z+8x>_§(8z+(y_ys)>dm' (2-5d)

As seen only,, ande,, are non-vanishing. Correspondingly, all components ofGheachy
stress tensor become equal to zero, save the shear siregseslo, .. These are given as

dw do
Opy = Oay(Y,2) =2Gezy =G (3_1/ —(z— zs)> e (2-6a)
Ow do
Opz = 022(Y,2) = 2Gep. = G (% + (y — yS)) Ir (2—6b)
Ignoring the volume loads, the equilibrium equations read
30951 ao-a:y aUzz _
Ox + Ay + 0z 0, (e-7a)
0oyy  Ooyy 0oy, B
Jx + dy * 0z =0 (e=7)
00y n 0oy . 004, _o (2-7¢)

oz y 0z
With o,y = 0yy = 0., = 0. = 0, ando,, ando,. only dependent op andz, the two last
equations are identically fulfilled, and the first equatieduces to

004y n 00»
dy 0z
Equation (2—-8) may be formulated at a point on the boundanyedt;;, j = 0,1,..., N, in

the related localz, n;, s;)-coordinate system. Ignoring the indg¢xthe non-trivial equilibrium
equation then reads

—0. (2-8)

004n 0044
on 0s

whereo,,, ando,.; denote the shear stresses along the lecahds-axes. According to Cauchy’s
boundary condition (ref.)r,,, can be expressed in terms of the shear stress compengrdasd
Oy, AS

=0, (2-9)

Opn = OpyNy + Op2s. (2-10)

Heren, andn, denote the components of the unit normal veci@ong they- andz-axes.

The symmetry of the stress tensor implies that = o,,.. Further, since the exterior and all
interior surfaces are free of surface traditions, corradpw tos,,,, = 0, it follows thato,.,, = 0
(see Fig. 2—-4). Then, Eq. (2-10) reduces to

OpyNy + 0z, = 0. (2-112)
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Figure 2-4 Shear stress in the normal direction at an exterior or imtdroundary.

Finally, insertion of Eq. (2—6) into Eq. (2—11) provides fbowing boundary condition formu-
lated in the warping function

ow ow

a—yny+ 5.~ (z—zs)ny + (y —ys)n. =0 =

ow

% = (Z - Zs)ny - (y - ys)”za (2_12)

wheredw/dn denotes the partial derivative af in the direction of the outward directed unit
normal.

Equation (2—12) must be fulfilled at the exterior and all ilteboundaries. The partial
differential forw to be fulfilled in the interiorA of the profile follows from insertion of Eq. (2—6)
into the equilibrium equation (2-8), leading to

Pw  w

(9—3/2 + 92 0. (2-13)

If a solution to Eq. (2—13) with the boundary conditions (2HE obtained, the shear stresses are
subsequently determined from Eq. (2-10). Equation (2-4.8pplace’s differential equation,
and the boundary conditions Eq. (2—13) are classified asottoalteed Neumann boundary con-
ditions. Notice that the solution to Egs. (2—12) and (2—3)at unique. Actually, ifu(y, z) is a
solution, thenu(y, z) + wo Will be a solution as well, where, is an arbitrary constant. Since the
shear stresses are determined by partial differentiafidineoof the warping function, all these
solutions lead to the same stresses. The boundary valu&prdbr the warping function has
been summarised in Box 2.1.
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Box 2.1 Boundary value problem for the warping function

The differential equation, representing the non-trivigligtion of equilibrium, reads:
v Qw
6—y2 + 92 0, (y,z) € A. (2-14a)

The Neumann boundary condition, representing the relé@anthy boundary condition, reads:

g—z = (2= zs)ny — (y — ys)nz, (y,z) eToUT'1U---UIN. (2-14b)

An alternative formulation for the solution of the probleandoe obtained by the introduction
of the so-calledPrandtl’s stress functio’ with the defining properties
oS oS
Tay = 5 Opz = ——. (2-15)
Upon insertion of Eq. (2-15) into Eq. (2-9), the equilibrigguation is seen to be identical
fulfilled, i.e.

904y Doy,  02°S 928

Ay oz oydz  Dz0y =0 (2-16)
From Eqg. (2—6) follows
004y 00y, 0w do 0w o do

9z dy <8z8y ; 1> G% ; <8y82 M 1> G% - _QGE' (2=17)

Then, the differential equation faf is obtained by insertion of Eq. (2—15) on the left-hand side
of Eq. (2-17), leading to
9?8 928 de
il + 5.2 = —2G%. (2-18)
Equation (2—18) is a compatibility condition f6rin order that the kinematical conditions (2—6)
are fulfilled.

The boundary condition fo$ follow upon insertion of Eq. (2—15) into Eq. (2-11F.

08 08

any - a—ynz =0 (2—19)

The tangential unit vector is given a8 = [s,, s.] = [-n., n,], cf. Fig. 2-2b, wherén,,,n.}
denotes the Cartesian components of the outward directedarmal vector at any of the bound-
arycurved’;, 7 =0,1,..., N, cf. Fig. 2-2b. Then, Eq. (2-19) may be written as

oS oS oS

— —s,=—=0. 2-20
oy syt 92" Jds ( )
wheredS/0s denotes the directional derivative §fin the direction of the tangential unit vector
s. Equation (2—20) implies thét is constant along the exterior and the interior boundaryesir
ie.

S=5;, j=0,1,...,N. (2-21)
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Equation (2—-18) is a Poisson differential equation (inhgereous Laplace equation), and the
boundary conditions Eq. (2—21) are classified as the sed@lirichlet boundary conditions.
In principle, the solution to the indicated boundary valueljem is unique. The problem is
that the constant values; of the stress function along the boundary curves are unkndie
determination of these is a part of the problem. For profilés imterior holes this is only
possible by the introduction of additional geometric cdiodis. The boundary value problem
for the Prandtl stress function has been summarised in Bbx Phe formulation in terms of
Prandtl’s stress function is especially useful in relatiorhomogeneous torsion of thin-walled
profiles and will be utilised in a number of examples below.

Box 2.2 Boundary value problem for the Prandtl stress function

The equilibrium equation is automatically fulfilled. Thengpatibility condition is represented by th
following differential equation:

D

9%s  9°S do
W + 92 —QGE, (z,y) € A. (2—22a)

The Dirichlet boundary condition, representing the Cauatyndary condition, reads:

S =25, ji=0,1,... N, (m,y)er()UF1U"'UFN. (2—22b)

The shear stresses, ando,. must be statically equivalent to the shear for€@gs= Q. =
0 and the torsional moment/,. Application of Gauss’s theorem on the vector figl8
[vy,v.] = [0, S] provides,

Q, :/gwdA /(‘90 ai)dA Z% 0-dz—§-dy) = ZS f dy, (2-23)

where the circulation is taken anticlockwise aldngand clockwise along';,j = 1,--- , N.
Further it has been used th#f is constant along the boundary curve, and hence may be trans-
ferred outside the circulation integral. No‘ﬂ, dy = 0. Hence, it follows that any solution

to the boundary value problem defined by Eqs (2—22a) and2{®-automatically provides a
solution fulfilling @, = 0. Usingv” = [$,0] it can in the same way be shown that

as 00
Qz—/AJa:sz__/ (a_y 32) dA =

Zé (S-dz—0-dy) = ZS% dz=0. (2-24)

The torsional moment/,, must be statically equivalent to the moment of the sheasstie
arounds, i.e.

M, = / ((y —ys)ow. — (2 — ZS)Ua:y) dA = / (Yoo — ZUzy)dAv (2-25)
A A
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Figure 2-5 Static equivalence of torsional moment to shear stresses.

where it has been used thgt o,.,dA = [ 0,.dA = 0. Next, insertion of Eq. (2-15) provides

oS oS 0 0

The divergence theorem with’’ = [yS, zS] provides

N

/A <(%(y5) + %@S)) dA = é fr ]. (ySdz — z8dy) =Y _ S, fr (ydz — zdy).  (2-27)

7=0 J

Let Ao andA; denote the area inside the boundary culvgandI’;. Then, use of Eq. (1-4a) in
Eq. (2-27) provides

P 9 -
/A (a—y(yS) + 5(’250 dA =2A0S, - > 24;S;. (2-28)

Jj=1

The negative sign of the last term is because the circulatiothe interior boundaries is taken
clockwise, cf. the discussion subsequent to Eq. (1-4agrtios of Eq. (2—28) gives the follow-
ing final result:

N
M, = —2A0S0 + 2 / SdA+2) " A;S;. (2-29)
A

j=1

The shear stresses remain unchanged if an arbitrary constadded taS. Then, without re-
striction one can choos®, = 0, which is assumed in what follows.

Let the domain of definition fof (y, z) be extended to the interior of the holes, whéfe, =)
is given the same valug; as the boundary value along the holes. With= 0, Eq. (2-29)
determines\/,, as twice the volume beloW(y, z). Further, withS(z, y) determined along with
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To,So=0

B
. .
6\5)
1

|
|
i
|
|
]
|
v
|
|
|
|
|
|
|

Figure 2—6 Variation of Prandtl's stress function over a cross-sectiith a hole.

the boundary valuesS;, j = 1,2,..., N, the torsional constart’ can next be determined upon
comparison of Egs. (2—3) and (2—-29). This is illustrated xgneples below.

It is remarkable that no reference is made to the positioh@fshear centre, neither in the
boundary value problem (2—22), for the Prandtl stress fanchor in the expression (2—-25) for
the torsional moment. In contrast, the coordinates of tleaishentre enter the boundary value
problem (2-14) for the warping function.

Defining the same homogeneous torsion problem, the warpimgfibn and Prandtl’s stress
function cannot be independent function. The relatiorofedi from a comparison of Egs. (2—6)
and (2-15):

oS Ow dé
7= (G -t-=)eq (2-302)
oS Ow do

"oy (5 +(y - ys)> G (2-30b)

where it is recalled that ~ 6,..

Example 2.1 Homogeneous torsion of infinitely long rectangular cross-section

Figure A shows an infinitely long rectangular cross-sectigti the thicknesg exposed to a torsional
momentM,. The torsional moment is carried by shear stresses unijodistributed in they-direction.
Then,S = S(z) is independent of;, and the boundary value problem (2—22) reduces to

d*s do
T2 =26, S(-t/2)=5(t/2)=0 @)
with the solution
1.9 o df
S(z) = 4(42: t )de. (b)

(continued)
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The shear stresses follow from Eq. (2—-15):
oS do
O'zy = E = —22G%, Oxz — 0 (C)

The shear stresses are linearly distributed in the thickdigsction, and has been illustrated in Fig. A.

] ]

Ozs = Ozy

A T= G%t dMac
dy » dy ( > 2z
Y
/ /
/ /
v \
Y Yy

Figure A Torsion of a infinitely long rectangular cross-section: tBimition of shear stresses (left); torsional moment
on differential cross-sectional segment (right).

Due to the independence of the shear stresses tive torsional problem can be analysed by merely
considering a differential cross-sectional segment ofghgthdy exposed to the torsional momett/ x,
see Fig. A. The incrementM z is related to the stress function by Eq. (2-28),

)2

dM, = 2/ S(z)dzdy = 1dyG d0
- 2

rd/2 1 do

—t/2

Atthe same tim@M, = GdKdf/dxz, whered K denotes the torsional constant related to the differential
segment. As seen from Eq. (d), this is given as

dK = %d‘"’dy. (e)

The valued K of the torsional constant for the differential segment Wélapplied below. a

Example 2.2 Homogeneous torsion of a solid ellipsoidal cross-section

Figure A shows an ellipsoidal cross-section without holéh semi-axes: andb, exposed to a torsional
momentM.,.. Atfirst, it is verified that the Prandtl’s stress-functiditlois problem is given as

2712 2 2
S(y,2) = — 20 (y—+z——1) et (@)

Taz+ b2 \a2 B2 dz”

(continued)
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\
w

A\

Yy
Figure A Ellipsoidal cross-section.

The boundary curv&, is described by the ellipsis

Y +Z =1 (b)

Hence,S(z,y) = 0 for (y,z) € T'o, so the boundary condition (2—22b) is fulfilled by Eq. (a).eTh
Laplacian ofs(y, z) becomes

TR = iy O~ ©

a2

9%s  9%S ab? (3 ) de de
b2

Then, also the differential equation (2—22a) is fulfilled which is concluded that Eq. (a) is indeed the
solution to the homogeneous torsion problem.
From Eq. (2—29) follows that

2 2 de y2 22 a3b3 4o
My =2 dA = — — =4+ = -1)dA=r——--5G—, d
/S 2+b2de/A(a2+b2 ) PP & @
where the following result has been utilised:
2 2
Yy ™
/A( +b—2—1)dA:—§ab. (e)
From Eq. (2-3) and Eqg. (d) follows that the torsional conistanan ellipsoidal cross-section becomes:
a’b?

Gd@/dx follows from Eq. (d),i.e.

a9 _ 1a®+b? Q)
dr 7 a3b3 o 9
Then, the shear stresses become, cf. Eqgs. (2-15) and (a):
oS 2z a’b? 1a? + b 2 M,
Tay 9z b2a2+b2 7 a3b3 T abd” ()
o= 95 2 a?h’  1a®+b 2 M, 0
T 9y a?a?+b2 w adh? SERETAS

(continued)
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The warping of the cross-section is given by Eq. (2—-4). Dudhiéossymmetry of the cross-section, it is
observed thay. = z; = 0, i.e. the shear centre coincides with the bending centre. Thenyé#uping
function is determined from, cf. Eq. (2—30):

8_w_ 1 8—S+z—— 242 z—|—z—b2_a22 i)
dy  Gdf/dx 0z a2+ b? b2+ a2’
ow 1 95 2 b —d ®)
9z Gdojdz oy T @+’ VT era?
The solution to Egs. (j) and (k) is given as

b2 — a2
w(y,2) = b2+—a2y2- 0]

Itis left as an exercise to prove that Eq. (l) fulfils the boarydvalue problem (2-14).
The warping follows from Eq. (2—4), Eq. (g) and Eq. (I)

WP @AY M1 M -
dl:_a2—|—b2y T a3bd G 7w a3bd 4 G-

uﬂ”(yv Z) = w(y, Z)

The solution (I) has been chosen so that the warping fromiotonsrovided by Eq. (m) is zero at the
bending centre. This will generally be presumed in whabfed. Then, the displacement of the bending
centre in ther-direction is caused entirely by the axial fordeé Finally, it is noted that, especially for a
circular profile witha = b, the warping vanishes everywhere on the profile. |

2.2.3 Homogeneous torsion of open thin-walled cross-secti ons

Figure 2—7 shows an open cross-section of a cylindrical beAmarc-length coordinate is
defined along the midpoints of the profile wall, where- 0 is chosen at one of the free ends,
ands = L at the other free. Furthek, specifies the total length of the profile wall, and the wall
thickness at arc-length coordinatés denoted(s).

My, mg

s=0

Figure 2—7 Open thin-walled cross-section of cylindrical beam expasehomogeneous torsion.
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For thin-walled cross-sections it is assumed tifaf < L. Then, the profile can be consid-
ered as built-up of differential rectangles of the lengthsimilar to those considered in Exam-
ple 2.2. Each has the torsional constait = §t3(s)ds, cf. Eq. (e) in Example 2.2. Hence, the
torsional constant for the whole profile is given as

K = % /L t3(s)ds, (2-33)

where the index_ indicates that the line integral is extended over the wherigth of the profile
measured along the profile wall.

The shear stresses are specified in a l¢eah, s)-coordinate system as shown in Fig. 2—7.
These coordinates follow from Eq. (¢) upon replacingith s andz with w. Then,

do

Ozs = 2nG—, Ozn = 0. (2-34)
dx

Finally, usingGdf/dx = M, /K, the maximum shear stresses fo= t(s)/2 becomes
T = Gd—t(s) = —1(s). (2-35)

The computation of the shear stress ifi-grofile is considered in the example below.

Example 2.3 Homogeneous torsion of a U-profile

Figure A shows d/-profile exposed to homogeneous torsion from the torsiormahent M. With the
thin-wall approximation < a, the position of the bending centre is as shown in the figuoethEr, the
cross-sectional area and the bending moments of inertimdrihey- andz-axes become
64 3 26 3

A = 10at I, = —a’t I. = —a’t, a

0(1 ) Y 15(1 ’ 3 a ( )
where the single indiceg and z indicate that the corresponding axes are principal axe® cFbss-
sectional constants given in Eq. (a) have been calculatddtir use. With reference to Eq. (2-33), the

torsional constant becomes:
K= %2(1(226)3 + %2@3 _ %a%. (b)

(continued)
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Figure A Homogeneous torsion &f-profile: Dimensions (left) and shear stresses (right).

The distribution of shear stresses follows from Eq. (2—-3B)e maximum shear becomesand 27,
respectively, where is given as
M, _ 3 M,

TR T e ©

Hence, in the present case, the shear stresses in the flaadegteer than those in the web. |

2.2.4 Homogeneous torsion of closed thin-walled cross-sec tions

The boundary value problem for the warping functiofy, z), defined by Eq. (2-14), has a
unigque solution (save an arbitrary additive constant) nttené the profile has an interior hole
or not. Although an analytical solution is seldom obtaimglal numerical solution can always
be achieved by a discretization of the Laplace operator byite{tifference or a finite-element
approach.

In contrast to this, the boundary value problem defined by(Eg22) for Prandtl’s stress
function cannot immediately be solved, because the boynddunesS;, j = 1,2,..., N, are
not known. The determination of these values requires thadtation of additional geomet-
rical conditions which express that the warping functigiy, z) shall be continuous along the

Elastic Beams in Three Dimensions



60 Chapter 2 — Shear stresses in beams due to torsion and bending

boundary curve§';. This may be formulated as

fdw—j{ <_dy+ d>:o, =12, . N (2-37)

Equation (2—37) can be expressed in the stress functionégfusg. (2—30):

0 0
fr_,» <8_id anZ> T G;Z ((Z — zs)dy — (y — ys)dz) = 0. (2-38)

It can be shown that the integrand of the first integral carebeitten in terms of the coordinates
s andn by the substitution
85 8S oS

The second integral in Eq. (2—38) may be recast as

% ((z —z5)dy — (y —ys)dz) = —j{ (ydz — zdy) = 2A4;. (2-40)
r; T,
The change of sign in Eq. (2—40) is because all circulatioagaken clockwise. Further, it has
utilised thatfF ysdz = ys fr dz=0 andg’iF zsdy = 0. Insertion of Egs. (2—39) and (2-40)
into Eq. (2— 38) provides the' following form for the geomediticonditions:

}[ —ds = 24,6 40 (2-41)

Only thin-walled cross-sections are considered. At first@s-section with a single cell
is considered as shown in Fig. 2-8. An arc-length coordirsatetroduced, orientated in the
clockwise direction. Correspondingly, a lo¢al n, s)-coordinate system is defined at each point
of the boundary curve with the-axis orientated inward into the cavity, whereas thaxis is
tangential to the boundary curve and unidirectional to tied@ngth coordinate. Then, the shear
stresses along the ands-directions become, cf. Eq. (2-15),

08 08

O'a:n:$7 Uzs:_a_n~

Here,S is constant along the exterior and interior boundary cuf¥kewall, given ass = Sy =
0 andS = Sy, respectively. Hencey,,, = 0 along these boundaries. If the thicknegs of the
wall is small compared to a characteristic diameter of thudilgr, it then follows from continuity
thato,.,, is ignorable in the interior of the wall.e.

(2-42)

Tun = 0. (2-43)

The stress function decreases fréh= S, at the inner side of the wall t§ = Sy = 0 at
the outer side. If(s) is small, the variation of(n, s) must vary approximately linearly over the
wall thicknesg (s), see Fig. 2-8. This implies the following approximation

65‘ Sl — So Sl

7T Ton T T ) sy (2-44)
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e N

Figure 2-8 Closed thin-walled cross section of a cylindrical beam egolcto homogeneous torsion.

Then, the geometrical condition Eq. (2—41) may be written as

ds do
— =2A,G— 2-4
5 f}l t(s) 1de’ (2-45)

whereA; is area of the cavity.
The torsional moment is given by Egs. (2-3) and (2-29):

M, = GKZ—H =24,5; (2-46)
X

Combining Eq. (2-45) and Eq. (2-46) provides the followieguit for the torsional constant:

Sl 4A% ds
K=24——=—"2 = —. 2-47
YGdo/dr T J f} t(s) (2-47)

Equation (2—-47) is known &redt’s formula
The shear stresses follow from Eqgs. (2—44) and (2—-46):
S1 M,

t(s)  2A1t(s) (2-48)

Ozs(8) =

Notice, that the shear stress;(s) is uniformly distributed over the wall-thickness as shown i
Fig. 2-8. This is in contrast to an open section, where a ligaaation was obtained, as given
by Eq. (2-34) .
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Example 2.4 Homogeneous torsion of a closed thin-walled cross-section

Figure A shows the cross-section of a beam with a single gplbsed to homogeneous torsion. The
thin-wall approximatiort < a is assumed to be valid.

! [

F I I > s
T
| v
al 2t 1 "
67 'y
t
) . , . , 1
b 4 ® My I I ® M :[_/' vkl
f L
a — [— 2t — [— 2t LT /I
12
2t
)
b 4 T |_.|
1
1 Pl M K/ET
a a

Figure A Homogeneous torsion of a closed thin-walled cross-sectideometry (left) and distribution of shear
stresses with = M, /(a2t) (right).

The area of the cavity and the line integral entering Eqs4%2-and (2-47) become

ds 4a = 4da 6a
Ay = 3a g5 _a, 2 _na a
Lo frlt(s) T @

Then, the torsional constant becomes, cf. Eq. (2-47),

— 4(30%) JP:]

The shear stresses follow from Eq. (2—-48):

M,

_6a2t(5)' (c)

Ozs =

The distribution has been shown in Fig. A along with the dicecof action. Note that = M., /(a’t)
has been introduced as a normalisation quantity. a

Example 2.5 Comparison of homogeneous torsion of open and closed profiles

Figure A shows two cylindrical beams, both with a cylindtiti@in-walled cross-section with the side
lengtha and the thickness. In one case, the cross-section is closed, whereas thesgosen in the
other case has been made open by a cut along a developer. tatiergradientf/dz and the shear
stresses in two beams due to homogeneous torsion are cahiyosy. (continued)
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Mw,oaeo

]sz,mgc

Figure A Homogeneous torsion of open and closed cross-sections.

According to Egs. (2-33) and (2—47), the torsional constantand K. for the beams with open and
closed cross-sections are given as

K, = —/tg(s)ds = %at3, (@)

4A4%  4q* 3
_‘f%_4a/t_at (b)

If the two beams are exposed to the same torsional moienit follows from Eg. (2—3) that the rotation
gradientsdf, /dxz anddf. /dx for the open and closed sections are related as

K.

db,/dz K. 4ad’

do./dz ~ K, 32

(©

Next, assume that both cross-sections are fully stresgethe maximum shear stress = 7. is in
both cases equal to the yield shear strgssThe corresponding torsional moments that can be carried
by the profiles are denoted,; , and M, ., respectively. With reference to Egs. (2—35) and (2—-4&s¢h
torsional moment are related as
M., Kory/t 2a

My . 2a%tt, 3t

(d)

Hence, whereas the deformations of the two beams depen(bcirad’lionaQ/tQ, the torsional moment
which can be carried depends @ft. In conclusion, open sections are extremely ill-condigidno carry
torsional moments in homogeneous torsion compared todkesgions. However, in many cases another
mechanics is active, which involves inhomogeneous torsifims substantially increases the torsional
properties of open sections. a
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As illustrated by Example 2.5, closed thin-walled crosstises, e.g.tubes and box gird-
ers, have a much higher torsional strength and stiffness dip@n thin-walled cross-section.
A mechanical explanation for the highly increased stiffnebtained for a closed cross-section
compared with the open cross-section is the fact that warisithindered by the fact that the
displacements in the axial direction must be continuousgtbes-direction,i.e. along the wall.
Especially, for a circular tube no warping is achieved in logeneous torsion, making this profile
particularly useful for structural elements with the primméunction of carrying torsional loads.

Next, consider a thin-walled cellular cross-section witlotal of V cavities as illustrated in
Fig. 2-9. Each cavity has the cross-sectional atgaj = 1,2,..., .V, and the boundary of the
cell is denoted’;. In each cell, a localz, n;, s;)-coordinate system is defined with the-axis
oriented into the cavity as illustrated in Fig. 2-9. The la&-length coordinate; is defined
along the cell boundary in the clockwise direction, and tladl-thickness ig(s; ).

oxs(s) = —

Figure 2-9 Cellular thin-walled cross section of a cylindrical beanpe@sed to homogeneous torsion.

As discussed in Subsection 2.2.2 and illustrated in Fig, Préndtl’s stress functiof is
constant along each interior boundary. Hence, on the caldaryl’;, S has the constant value
S;, 3 =1,2,...,N. However, different values of Prandtl’s stress functiom generally present
on either side of a common wall between two adjacent cglésmdk. Because of the thin-wall
assumption the variation ¢f over the wall thickness must be approximately linear. Hewnit
reference to Eq. (2-42),

95 8-S

on; — t(s)) (351

Ogs = —

Thus, o, is uniformly distributed over the wall-thickness as illaged in Fig. 2-9. The shear
stress componeant,,, vanishes alond'; as well adl’;,. It then follows from continuity thatr.,,
is ignorable in the interior of the wall as welle.

Tom = 0. (2-52)
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Insertion of Eq. (2-51) into Eq. (2—41) provides:

dSi df X
i — Sk — =2A,G— =12,....N 2—
;(SJ Sk) /1_‘]‘)C t(SJ) de$7 J [l ) ( 53)

where the summation on the left-hand side is extended ovesdties adjacent to cefl. Notice
that .S, = 0 at the part of cellj adjacent to the outer periphery. Then, Eq. (2-53) represént
coupled linear equations for the determinatiobefj = 1,2,..., N.

Subsequently the shear stress in all interior and exterior walls is determined from Eq. (2—
51). According to Eq. (2—29), the torsional moment is given a

N
Mw = QZAJ‘SJ‘, (2_54)
j=1

where the contributiorf, S dA can be ignored due to the thin-wall approximation. Then, the
torsional constant follows from Eq. (2-3):

M N S
K=—"% 9N a2 2—
Gdf/dx DA Gdb/dx (2-55)

j=1

Since S; turns out to be proportional t6/df/dx, the right-hand side of Eq. (2-55) will be
independent of this quantity.

Example 2.6 Homogeneous torsion of a rectangular thin-wall profile with two cells

Figure A shows a rectangular thin-walled cross-sectioh wito cells exposed to homogeneous torsion
from the torsional moment/,.. The wall-thickness is everywhetex a.

@fﬂw:%f [ ] B 0= ST
( = ) UUUI% <Hﬂm

1 ] i

- )

n n
51 S T 59 s T
2 - ple o 2
Figure A Homogeneous torsion of a rectangular thin-walled crossiesewith two cells. Definition of local coordi-
nate systems and distribution of shear stressesmithM,. /(a°t). (continued)
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For the two cells, Eq. (2-53) takes the form:

a a a a 9 ﬁ
(Sl—O)E—F(Sl—o)?—F(Sl—0)?+(51—S2)?72a de, (a)
2 2a df
(S2=0)Z + (82— S1) 5 +(S2 = 0)F +(S2 —0) T =2-24°G . (b)
451 — Sy = 2atGﬁ, —S1 + 653 = 4atGﬁ. (C)
dx dzx
The solution of Eq. (c) reads
16 18
— 2uac — 2ac d
S1 = 23 G Sy = 23 G (d)

and by Eq. (2-54), the torsional moment is derived as

M, = 2a%5, + 22025, = 2 4 Gd9 o 23 M,

23 = dr 104 a’t’ )

Then,S; and.S; may be written as
8 M, 9 M,
52 a2’ 2T 5 a2 M

The shear stresses.; follow from Eq. (2-51) and Eq. (f). The distribution has bedmown in Fig. A
with their direction of action. The quantity = M../(at) represents a normalisation quantity for the
shear stresses.

The torsional constant follows from Eq. (2-55) and Eq. (d)

Sy =

16 , 18 104 4
K=2-a* —at+2 2 —at = —a’t.
@ ggatarcat ggat = S ©)

If the interior wall is skipped, the corresponding quaestbecome:

Sy === o =—=-—2 K=z2d. h
T ¢ 6 a2t 2¢ ()
Hence the interior walincreaseshe shear stress in the exterior cell walls of the right aelif ér to

2.7 (1.3%). The torsional constant is increased merely fiém- 2a°t to K = 122a’t (2.2%). O

As indicated by Example 2.6, only a small increase of thedaed stiffness is achieved by
the inclusion of internal walls in a cross-section. Heneent an engineering point of view,
the benefits of applying structural members with a cellutaiss-sections are insignificant in
relation to torsion. Since the advantages regarding fléxlefrmations are also limited, and
profiles with two or more cavities are not easily manufaduremay be concluded that open
cross-sections are generally preferred for beams loadeditiirectional bending. Likewise,
closed cross-sections with a single cavity (pipes or boctays) are preferable when the beam is
primarily subjected to torsion and/or bending in two direcs.

Finally it is noted that the solution method based on Prénstiess-function will only be
used in relation to hand calculation for thin-walled crgsstions with at most two or three cells.
Otherwise, for thick-walled sections or multi-cell profrls, the homogeneous torsion problem
will be solved numerically by a finite-element approach astaer spatial discretization method
based on the Neumann boundary problem specified in Box 2.1.
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2.3 Shear stresses from bending 67

2.3 Shear stresses from bending

In the previous section, the shear stresses occurring dhertmgeneous torsion of a beam
have been analysed. A second contribution to the sheasstratem from bending or flexural
deformations of a beam and with a proper choice of coordé#te two contributions decouple.
Figure 2—10 shows a cross-section exposed to bending witbhmion. Correspondingly, the

loads per unit lengtl, andg. as well as the shear forcés, and(@. have been referred to the
shear centré, the position of which is discussed in this section.

Figure 2-10 Cross-section exposed to bending.

The cross-section has the external boundayyand may have a number of cavitie¥,
bounded by the interior boundary curves, j = 1,2,..., N. Again, a local arc-length co-
ordinates; is defined along each boundary, orientated clockwise foingdirior boundaries,
j =1,2,..., N, whereas the arc-length coordinatealong the outer boundary curve is orien-
tated anti clockwise. At any point along the outer and inreurtalary curves, local right-handed
(x,n;, s;)-coordinate systems are defined as shown in Fig. 2-10.(ZFhg z)-coordinate sys-
tem with origin at the bending centfg is assumed to be a principal-axes coordinate system.

On the cross-section, the normal stress as well as the shear stresses, ando,. are
acting. With reference to Eq. (2—7), these stresses fuffietuilibrium equation

30195 ao-a:y aazz
+

ox oy 0z
whereo ., is determined from Navier's formula (1-7%).
N@) | My@), M)

=0, (2-57)

wa([L‘,y, Z) = A Iy z Iz (2_58)
It then follows that

002y _dN 1 dM, = dM, y G y z

br A A I, dr L AT Qutmlpt@mm)g o (2559)

Elastic Beams in Three Dimensions



68 Chapter 2 — Shear stresses in beams due to torsion and bending

where the following equilibrium equations have been usdtérstatement:

dN dM, dM, B
A stress functio” = T'(x, y, z) is introduced with the defining properties
oT oT
U:vy = a—y, Opy — a (2—61)

Hence, T is defined differently from the somewhat similar Prandttiess function, cf. Eq. (2—
15). Insertion of Egs. (2-59) and (2—-61) into Eq. (2-57) mes the following Poisson partial
differential equation foff

T 0*T  q. y z
Tzﬁ+ﬁ_g_(Qy+mZ)E_(Qz_my)I_y' (2-62)
With reference to Egs. (2—10) and (2-11), the boundary ¢tiomdiread

Oxn = OzzNg + OxyTy + 0z, = OgyTly + 0z, = 07 (2_63)

wheren, = 0 because the beam is cylindrical. Insertion of Eq. (2—6D)tihis equation provides
the following homogeneous Neumann boundary conditionsetdulfilled on all exterior and
interior boundary curves:

or _or ot
on oy Y 0z

The boundary value problems defined by Egs. (2-14) and (Ze22he warping function
and Prandtl’s stress function, respectively, are independfz, i.e. the solution applies for all
cross-sections of the beam. In contrast, the correspormtingdary value problem defined by
Egs. (2-62) and (2-64) faf = T'(x,y, z) must be solved at each cross-section defined,by
where the shear stresses are determined. This is so, begausg, m., , andQ. entering
the right-hand side of Eq. (2—62) may vary along the beam. sthetion to Eq. (2-62) with
boundary conditions given by Eq. (2—-64) is unique save aitrarp function?, = T(x) which
has no influence on the shear stresses. The method can beddpphick-walled or thin-walled
cross-sections with or without interior cavities. Norrgahe boundary value problem can only
be solved numerically based on a discretization of the Laaptaoerator entering Eq. (2—62). The
boundary value problem for the stress functiovhas been summarised in Box 2.3.

n, = 0. (2-64)

Box 2.3 Boundary value problem for the stress function determining shear stresses in bending

For a given cross-section determined by the abscissa #ssdiunctiory” = 7'(z, y, z) is obtained from
the Poisson partial differential equation

T | 0°T  qu(x)

gL, 94 _ Yy _ _ z |

57 T 97 =~ Q@ @)~ Q@) —mye) T, () eA (2-659)

with the homogeneous Neumann boundary conditions

g—TZO, (y,z2) eToUT1U---UDN. (2—-65b)
n
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2.3 Shear stresses from bending 69

The indicated method is not applicable for hand-calcutetioFor this purpose a method
will be devised in the following sub-sections, which soltke problem for thin-walled open
cross-sections and closed thin-walled sections with fdls.ce

2.3.1 Shear stresses in open thin-walled cross-sections

Figure 2—-12 shows the same open thin-walled cross-sectighawn in Fig. 2—7, when ex-
posed to homogeneous torsion. Now the shear stresseando,,, defined in local(z, n, s)-
coordinates are requested, caused by the shear iQicand() . acting through the shear centre
S. We shall return to the definition and determination of thessttentre later in this chapter.

Oxs S

Figure 2-11 Cross-section exposed to bending.

The shear stress component, still vanishes at the surfaces= i%t(s), cf. Eq. (2-34).
For continuity reasons, Eq. (2—43) remains valid in theriateof the wall,i.e.

Oan(x,n,5) ~ 0. (2-66)

Then, with reference to Eq. (2-57), the equilibrium equatibstress components in the, n, s)-
coordinate system reduces to

00pe  O04s

oxr Os

From Eq. (2-58) follows that ., varies linearly over the cross-section. Thus it must be atmo
constant over the thin wall and can be replaced by its valubeamidst of the wall. From
Eqg. (2-67) it then follows that, s must also be approximately constant in thdirection,i.e.

~ 0. (2-67)

ozs(T,m,8) = 0us(, 8). (2-68)

The constancy of the shear stress compongnin the thickness direction has been illustrated
in Fig. 2-12. This variation should be compared to Eq. (2484homogeneous torsion of an
open cross-section, where a linear variation witis obtained as illustrated in Fig. 2—7.
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70 Chapter 2 — Shear stresses in beams due to torsion and bending

H+dH, 05z + dose

Ozs + dogs

Ozz + doza

Figure 2-12 Differential element of a thin-walled cross-section.

A differential element with the side lengtlls: andds is cut free from the wall at the axial
coordinater and at the arc-length coordinatesee Fig. 2—12. On the sections with the arc-length
coordinates ands + ds, the shear forces per unit lengthandH + dH are acting, where

t/2
H(z,s) = / Osz(x,m, s)dn =~ o.5(x, $)t(s). (2-69)
—t/2

Here it has been exploited that, = 0.5, and Eq. (2—68) has been utilised. On the sections
with the axial coordinates andx + dx, the normal stresses., ando,.. + do,, are acting (see
Fig. 2-12). Equilibrium in the:-direction then provides

(0w + doyy)t(s)ds — oyut(s)ds + (H + dH)dx — Hdx =0 =
oOH 002

75 T,

where it has been utilised thay,, has an ignorable variation in the thickness direction. # ha
therefore been replaced with a constant value equal to the paesent at the midst of the wall.
Alternatively, Eq. (2-70) may be obtained simply by muiggation of Eq. (2-67) with(s) and
use of Eq. (2-69).

With Hy(x) representing an integration constant, integration of Eq70Q) provides the so-
lution

—0, (2-70)

5 004

o Ox

H(x,s) = Ho(x) — t(s)ds. (2-71)

Especially, in the open thin-walled section the boundandition o, = 0 applies at the ends of
the profile, corresponding to the arc-length coordinatesO ands = L, i.e.

H(z,0) = H(z,L) = 0. (2-72)

Thus, for an open thin-walled cross-section, the integnatbnstant in Eq. (2—71) Hy(x) = 0.
The partial derivativéo . /Ox is given by Eq. (2-59). In what follows it is for ease assumed
thatg, = m, = 0. Equation (2-59) then reduces to

Prend) _ i)y L),

(2-73)
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2.3 Shear stresses from bending 71

where(y(s), z(s)) denotes the principal-axes coordinate of a position on @iledetermined by
the arc-length coordinate
Then, insertion in Eq. (2-71) and use of Eq. (2—69) provigegdfiowing solution foro,.:

0 Q) .
t(s)H( ) t(s)I, t(s)I,

where it has been utilised thal, (x) = 0 for the open section, and

Sa.(s) — Say(s), (2-744a)

Ogs(T,8) =

SQy(S):/o z(s)t(s)ds:/QZdA, SQZ(S):/O y(s)t(s)ds:/ﬂydA. (2-74b)

The quantitiesSq, (s) andSq.(s) denote the statical moment around theand z-axes of the
area segmerfd(s), shown with a dark grey signature in Fig. 2-12 and defined as

Q(s) = /O " i(s)ds — /Q dA. (2-75)

Equation (2—74) is known aSrashof’s formula The formula is valid for Timoshenko as well
as Bernoulli-Euler beams with a thin-walled open crosdisec In this context it is noted that
Bernoulli-Euler beam theory is based on the kinematic cairgtthat plane cross-sections or-
thogonal to the beam axis in the referential state remainepéand orthogonal to the deformed
beam axis. In turn this implies that the angular strajps and ~,. vanish, and hence that
ozy = 04y = 0. Hence, the shear stresses in bending cannot be determomadtie beam
theory itself. Instead, these are determined from Eqs.qRa®d (2—74) which are derived from
static equations alone and, hence, are independent of aegnkitic constraints.
The shear strain caused by the shear strgs$s given as

1 1
Exs = ﬁozs - MH('r?s) (2_76)

The shear straim,, implies a warpingu.o(x,0) of the cross-section, additional to the dis-
placement in thes-direction caused by the axial force and the bending momenke latter
is described by the kinematic conditions defined by Egs. 1&)-and (1-15) for Bernoulli-Euler
beam theory. Hence, the displacements of the cross-seetative to the principal-axes coordi-
nate system can be written as

Uz (x, 8) = wy(x) — dwdyiagx)y(s) — dwdziéx)z(s) + ug(z, s), (2-77a)
uy(z, 5) = wy(z), (2-77h)
uz(z, s) = wy(x). (2-77c)

The component(z, s) of the displacement vectar(z, s) in the tangentiak-direction in the
local (x, n, s)-coordinate system shown in Fig. 2-12 is given as

d:(s)

uy(x,s), (2-78)

dy(s) r [ ua (2, 5) } _ dy(s)

T _ S
us(z,s) =s u(z,s) = [ d50s) uy(, 5) ds
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72 Chapter 2 — Shear stresses in beams due to torsion and bending

wheres” = sT(s) = [dy/ds,dz/ds] signifies the unit tangential vector. Then, the strain
ezs(z, S) follows from Egs. (2-77) and (2-78):

1 <8us N 3ux> _ % <@d& N dz(s) dw, dydw, dzdw, N 8uzo> N

Fos = 2\ oz s ds dx ds dz ds dx ds dx Jds
1 8%0
s = — . 2-79
c 2 0Os ( )
The warpingu.o(z, s) is next determined by integration of Eq. (2—79):
Ugo(x, s) = 2/ Egs(T, 8)ds + ug(x). (2-80)
0

The arbitrary functionso(z) is adjusted, so that,, = 0 at the bending centr8. Whene, is
determined from Eq. (2—76), the warping of the cross-se@ditional to displacements in the
z-direction predicted by Bernoulli-Euler beam theory cardbgermined by Eq. (2—80).

Example 2.7 Shear stresses and warping due to bending of a rectangular cross-section

Figure A shows a rectangular beam of heigland thicknesg exposed to a shear for¢g,. The bending
moment of inertia, the area segmélits) and static momenf,. (s) around thez-axis become

1.3 _ _ h s
I. = 12h t, Q(s) = st, Sa-(s) = st(2 2). (@)

where the arc-length parameter is defined from the upper efltee profile,i.e. s = % + y. Then,
Ozs = Oy IS determined from Eq. (2—-74), that is

__Q o5 S\ _3(, v\ D
J””y__ESQZ(S)_G(h )~ ) e (b)

Equation (b) specifies a parabolic distribution over thasrsection, where,, = 0 at the edgeg = i%

in agreement with the boundary conditions, and the maximafnevg% is achieved at the bending
centreB aty = 0.
Next, the warping is determined from Egs. (2—76) and (2-8@¢ther with Eq. (b):

_ 1 /[ _ Qy [*(s s° Qy 52 21
qu(I7S)_uo+G./o Uxde—u0+6Ght ,/0 (h h2>d5_ Gt 3h2 2]743 2 ) (C)

whereu, is adjusted, sa,o = 0 at the bending centrée. ats = % With s = % + v, the warping
displacements become

_ (32 ()
wo() = 157 (35 —(57) |- (d)
Equation (d) specifies a cubic polynomial variation, legdim an S-shape of the warping function. The
distribution ofo,, (y) andu,o(y) has been shown in Fig. A. (continued)
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1 Qy
- k=t 2G
e
A ;/ Q(s)
2 3Qy
z P 2 th
N z x T
o e
l\ B=S
h - Qy
2 Oay
1 Qy
\ 2G t
Y Yy
Figure A Rectangular cross-section subjected to bending: Area esgig(teft); shear stresses (centre); warping
(right). O

Example 2.8 Shear stresses due to bending of a double-symmetric I-profile

Figure A (left) shows a double-symmetric cross-sectioroseg to the shear forcé€s, and@.. The wall
thickness is everywhere < q, i.e. the thin-wall assumption applies. The cross-sectiona arel the
principal bending moments of inertia become

_ _ i 3 71 3 _ a 2 i 3, l 3
A = 3at, I, =2 12at—6a t, I.=2 (2> at+12at—12a t. (@)
Due to the symmetry, the bending and shear centres are dimigci
n
lt / S1 / S 4 / 52
| e e
i $ N
v s
a n S5
2 — [t _
B=S n $
\?_&_‘z s
K
: ]
S S
lt / 3 / 4
| ; il = v
a a \ \ s \ s
5 5 n
v
Y

Figure A Double-symmetric/-profile: Geometry (left); definition of arc-length coordies and local coordinate
systems (right).

At first the shear stresses caused(yare considered. For each of the four branches and the web of
the profile, arc-length coordinates and local right-handedz, n;, s;)-coordinate systems are defined
as shown in Fig. A (right). At the free edge, the shear steeaser,s = 0. Hence, the shear force per
unit lengthH (z, s;) vanishes at this point, and Eq. (2-71) becomes valid for beatich. (continued)
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1
Sﬂy(81) = 57551(51 — a),

1
Say(s3) = 57553(53 —a),

1
ngy(sz) = —57552(52 - a),

Say(s4)

1
—57554(54 —a).

Say(s) [ B ) it
y(s1 8 Say(s2) TwslS1 4 at ozs(s2)

5 3 > ||

| I
B=35§ B=S5
\“0-—>QZ \\.__sz
| | |

o @ RCHYEE

SQy(SB) %a2t SQy(S4) Oxs (53) % % Um5(84)

Further,Sqo, = 0 along the web. The distribution has been shown in Fig. B)(left

1a2¢ 3 &
4 7 at
SQZ(Sl) SQZ(S2) 0’15(81) O'x.s(SQ)
ol [& e
| | | |
B=5 | 1a2y B=5 3 Q_g
a
Qy//r Qy/
6 Q
307t —{ 7at
| | |
o\ @ DD
Sa- (83) 1 9 Sqz (54) Uzs(53) 3 Qy Tas(s4)
307t 7 at

Figure B Double-symmetrid-profile: Distribution of statical moment of the area segtre(s ;) around they-axis
(left); distribution of the shear stressess (s;) from Q. (right).

On the five branches, the area segments bedofng) = s;t. These have been shown with a dark grey
signature in Fig. A (right). For the flanges, the statical mats of(2(s;) around they-axis become

(b)

(©

Figure C Double-symmetrid-profile: Distribution of statical moment of the area seghfe(s;) around thez-axis
(left); distribution of the shear stressess (s;) from Q. (right).

(continued)
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2.3 Shear stresses from bending 75

The shear stresses(s;) follow from Eq. (2-74):

Oes(s1) = —%Sgy(&) SQ—tsl(a—sl) Ozs(82) = —SQ—tsz(a—sz) (d)
Oas(s3) = BQ—S3(a — s3), Ows(84) = —3Q—84(a — 84), 02s(s5) = 0. (e)

3¢ 3¢

The distribution has been shown in Fig. B (right). The sigfen® to the local:, n;, s;)-coordinate
system. Hence, a negative sign implies that the shear s&ressing in the negative;-direction and,
hence, is co-directional t@ .. Then, the shear stresses in the flanges are distributelqtiagdly in the
same way as stresses in the rectangular cross-sectiomleretsin Example 2.7. Each flange carries the
shear forc&), /2, and no shear force is carried by the web in the present case.

Next, the shear stresses caused:yare analysed. The statical moment of the area segfésn)
around thez-axis becomes:

1 1

Saz(s1) = —§atsl, Sa-(s2) = —§at52, 4)
1 1 a 1
Sa-(s3) = §at33, Sa-(s4) = §at54, Sa-(s5) = —§at — §t85(a — 85), (9)
and by Eq. (2-74) the shear stresses(s;) are determined as
6

Guas1) = — P S0n(s1) = Bt oaslsn) = 2 s, (h)

6Q 6Q 6 Q .
Oxs(83) = _?a_;;SS’ Ozs(84) = —?G—Qyt&;, Ozs(s5) = 7(a + ssa — s3) ty 0]
The distribution 0f2(s;) ando.s(s;) has been shown in Fig. C. O

2.3.2 Determination of the shear centre

So far in this section we have only considered double-symmetoss-sections for which the
shear centreS coincides with the bending centie. However, in the general case, the shear
centre will be different from the bending centre as suggelsieFig. 2—1. In any case, the shear
forces@, and@. must be statically equivalent to the shear stresses irtesbrver the cross-
sectionj.e.

Qy = / OrydA, Q.= / 0yp2dA. (2-83)
A A
In the present case, we are concerned with bending uncofiptadorsion. Hence, the torsional

moment)M,, stemming from the shear stresses on the cross-sectiordsvemish. According to
Eq. (2-25), this implies the identity

A ((y - ys)azz - (Z - zs)azy) dA = 0. (2_84)

Combining Egs. (2—83) and (2—84) provides the relationHerdoordinates of the shear centre:

—Qyzs + Qrys = / (—202y + yog.)dA. (2-85)
A
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For a thin-walled cross-section, this identity may be receigrms of the localz, s, n)-coordinates,
providing

—Qyzs + Qrys = / h(s)ous(x, s)t(s)ds, (2-86)
L
whereh(s) is the moment arm of the differential shear foecg («, s)t(s)ds,
_ o d2(s) dy(s)
h(s) = y(s) I z(s) P (2-87)

It is noted that, with the given definition(s) may have positive as well as negative values.
Insertion of Eq. (2—74) into Eq. (2—86) provides the idsntit

Qs+ Quys = —%j /L oy ((s)ds — L2 /L So-h(s)ds (2-88)

which holds for arbitrary), and@ . This implies the following solutions for the coordinatds o
the shear centre:

goo ot / Sop(Vh(s)ds,  zs= / S (s)h(s)ds. (2-89)
Iy L Iz L
In particular, for a thin-walled section without branchjit,, (s) andSq. (s) become
Say(s) = [ 2))ds. Sals) = [ uloniss (2-90)
0 0

Hence, Eq. (2—89) involves a double integration with resfzethe arc-length parameter over the
length L. We shall arrange the calculation in a way such that only glsiline integral needs to
be evaluated.

s=1L

Figure 2-13 Cross-section exposed to bending.
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At first the so-called sector coordinatés) with pole B is introduced. The sector coordinate
w(s) is equal to the area shown in Fig. 2—13, delimited by the bendentreB and the area
segmentl(s). Thus,w(s) is given as

w(s) = /OS h(s)ds. (2-91)

It follows thatw(s) may be considered as an integraho#) with respect ta;, i.e. Lw(s) = h(s).
Hence, from Eq. (2-90) follows that the derivation $f,(s) and Sq.(s) with respect tos
become

LSoy(s) = 2()1(s), Siau(s) = y(s)i(s) (2-92)
dszS—ZS S), dSQZS—ys,s.

Then, integration by parts of Eq. (2-89) and use of Eq. (2p8@)ides

b= - ([sgy<s>w<s>} - ) z<s>w<s>t<s>ds> (2-93)

y 0

Now, Sq,(L) = S, = 0, because théz, y, z)-coordinate system has origin in the bending
centre. Further, botlq, (0) = 0 andw(0) = 0, so the first term within the parentheses vanishes
in both limits and, hence,

Ys = I, I,.= /()Lw(s)z(s)t(s)ds = /szdA. (2-944a)

Similarly, it can be shown that

L
Iwy:/o w(s)y(s)t(s)ds:/AwydA. (2-94b)

The quantitied,,, andl,,, are denotedector centrifugal momentén arbitrary constant, can
be added tau(s) in Eq. (2-94) without changing the value ff, andl,,. This is so because
JywoydA = wo [, ydA = 0 and [, wozdA = 0. Hence, the sector coordinate is determined
within an arbitrary constant.

As a third method, the coordinates of the shear centre magteerdined from Eq. (2—86), if
the shear stress;(z, s) is calculated fron),, and(), separately. Thus,

Jo = é /L ors(z,$)h(s)t(0)ds  for  Q, =0, (2-95a)
2g = Qiy/Lom(x,s)h(s)t(s)ds for Q.=0. (2-95b)

Obviously, if the profile has a line of symmetry, then the stoemtre is placed on this line.

Finally, a note is made regarding the notation in this chapteviouslyw(zx, y) has denoted
the normalised warping functioor, simply, the warping function. However, we shall latee se
that for open thin-walled sections the warping functiomleritical to the sector coordinate, which
motivates the naming of the latter quantity.
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Example 2.9 Determination of the shear centre for an I-profile with a single line of symmetry
The thicknesses of the flanges and the web of the profile shoviaigi A (left) are all¢. Due to the

symmetry around thg-axis, they-axis as well as the-axis become principal axes. The bending centre
is placed as shown in the figure and the principal momentsasfimbecome:

91 375, j- %agt.
12 13
The profile is exposed to a horizontal shear fofzg and the position of the shear centre will be deter-

mined both by Egs. (2-89), (2-94) and (2-95). Due to the symymthe shear centre is placed on the
y-axis,i.e.zs = 0.

I, = @

2a2t
Say(s1) Say(s2)
" 4a ' it @ @ A2
| - el
an \ 51 52
Q 3 "
. =
S |
— 2
6a BT
x
t 42
— | |— 24 -
t s A
Yy l 4\
S | T

T _\Lﬂ
3a N\
Sﬂy(SS Say(sa)

Figure A Single-symmetrid-profile: Geometry (left); definition of arc-length coordies and distribution of static
moments (right).

For each of the four branches indicated in Fig. A (right), acrlangth parametesj and a local

(z,m;,s5) coordinate system are defined. The statical mom&ngs;) = |, z(s;)t(s;)ds; become:
e 1 1
Say(s1) = — / (2a — s)tds, = —5(4a — s1)s1t, Say(s2) = 5(4a — S2)sat, (b)
JO
s (3 1 1
Say(s3) = — / (§a - 53) tdss = —5(3a — $3)s3t, Say(sa) = 5(3@ — S4)Syt. (c)
JO

The shear stresses(z, s;) are positive, when acting in the direction of the arc-leruahametes;.
These follow from Grashof’s formula (2—74):

Q- 12 Q-
Ozs(sj) = _Esﬂy(sj) = —ﬁmsﬂy(sj)- (d)
The distribution of shear stresses has been shown in Figf8. (| (continued)
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72 2
48 3@
Q1 isa” 13
O | 22
| | 1 | e ]
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B/ jgj B/ ja;
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; 27
@ 1827 63,2

1—3(1

Figure B  Single-symmetrid -profile: Shear stresses from the shear fagcewith = = Q. /(at) (left); distribution
of the sector coordinate(s) (right).

The shear stress resultag)s and@)- in the top and bottom flanges become:

2 48 4t-% 64 2 27 3t-Qz 27

T TR i B T R P TR (©)
The shear centre then follows from Eq. (2-95):

36 42 90
szs = _Qlﬁa + Qzﬁa = Ys = _9_1a' (f)

Next, employing another approach, the moment &) defined by Eq. (2-87) is negative on the
branches described by arc length parameie@nd sz, and positive along the arc-length parameters
andss. Then, from Eq. (b) it follows that

/L Say(s)h(s)ds

"2a 2a
— /0 —%(4(1 — s1)s1t (—%a) dsi + ./0 %(4& — S2)sat (—i—%a) dss

3a/2 3a/2
+/0 —%(Sa — s3)s3t (—l—%a) dss +/0 %(Sa — S4)8at (—%a) dsy

96 4, 96 4, 189 4, 189 4, 15 4
7135t+13at 52at 52@75* 2at. (9)

Then, from Egs. (2-89) and (a) it follows that

1154, _ 9
C = = ——a.
Radt 2 91

(h)

Ys = —

This result is identical to the result achieved in Eq. (f).wéwer, it is noted that the result in Eq. (h) has

been achieved without the determination of the shear ssesdence, the second approach may appear

to be simpler than the first approach, but it does not provigergformation about the stress distribution.
(continued)
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80 Chapter 2 — Shear stresses in beams due to torsion and bending

Finally, the same calculation is performed by means of Eg942. The distribution of the sector

coordinatev(s;) = [;7 h(s)ds with the poleB for each of the four branches becomes:
36 st 36 36 .
w(s1) = —Ea/0 ds; = —Eash w(s2) = 1—3(182, 0)
42 4 42 42 .
w(sa) = —Ea/0 dsy = —13%54) w(s3) = 13954 1)
The sector centrifugal momeit. = [, wzdA = [, w(s)z(s)t(s)ds becomes:
L,. = 2/2a(2a —51) - ﬁas - 2tds1 + 2/20 —§a + 54 - 4—2as 2tds —Ea‘lt (k)
wz — o 1 13 1 1 o 2 4 13 4 4 = 2 )

where the symmetry of the integrands)z(s) has been exploited. Then, from Egs. (2-94) and (a) the
shear centre is determined as

1 15 4 90
Ys = — 57 a't= : o
Tadt 2 “or”
Hence, the three different approaches lead to the samé.resul a

Example 2.10 Determination of the shear centre for a symmetric U-profile

The bending centre of thé-profile has the position shown in Fig. A. Since the profileyimmetric, the
indicated(zx, y, z)-coordinate system is a principal axis system. The momdritedia with respect to
the principal axes become:

64 5 26 4

Iy Ea t Iz = ?a t. (a)
2a N
4 4
5% L2t 59
|
i —
a Q2

nn
O
n
\J
N
nn
]
P m—
\J
N

! 2t Q2
Qy il | Qy |

v 112 v
Y 65 @ y

Figure A SymmetricU-profile: Geometry (left); position of the shear centrelft)g

Local arc length coordinates, s2 andss are introduced as indicated in Fig. B. The distributions of
the static momentSq, (s;) andSq:(s;) are shown in the figure. The analytic expressions are given as
(continued)
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.
Say(s1) = / (ga — 51> 2tds; = (Easl — s%) t, (b)
0 5 5
s2
Say(s2) = é61225 +/ —éa tdss = éat(a — S2), (c)
5 0 5 5
4 3 4 4
Say(s3) = ——ad’t+ / ——a+ s3 | 2tds3 = —=a’t — §a83t + sat, (d)
5 ; 5 5 5
s1
Saz(s1) = / (—a)2tds1 = —2asit, (e)
0
2 2 2 14
Sax(s2) = —4a”t + (—a+ s2)tdse = —4a”t — asat + 55275, )
0
.
Sa-(s3) = —4a’t +/ a - 2tdss = —4a*t + 2asst. (9)
0
SQy(Sl)
4 Sa-(s
§a2t\‘/®—“%a2t _4a2£\\ S Qx(s1)
| [ -
$ \ g Sa:(s2) $ o1
S92 52
I B - B
z @ z
12
Say(s2) ! 207" !
/83 Yy /53 Yy
= | | 5 = | |
4 2t QN ECLQt —4 Zt . @
5@ 5 Sﬂy(SB) @ Saz(s3)

Figure B SymmetricU-profile: Distribution of the static momeng,, (s;) (left) andSq. (s;) (right).
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> |
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Figure C SymmetricU-profile: Distribution of the shear stresses from the sheares@. with . = Q. /(at)

(left) and@, with 7, = Q/(at) (right).

(continued)
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82 Chapter 2 — Shear stresses in beams due to torsion and bending

The shear stresses follow from Grashof’s formula (2-74gufé B (left) shows the distribution of
shear stresses fro)., and Fig. B (right) shows the distribution fro@,. The position of the shear
centre is given by Eq. (2-95). Since the shear stresseBom Q. are distributed symmetrically around
the z-axis it follows thaty, = 0, reflecting the fact that the-axis is a line of symmetry.

The resulting shear forc&3; andQ- in Fig. A then become

1 6 6 2 3 6
Q1f2t~§~2a~%TyfﬁQy, ngt~(§~§+ﬁ)2ary—Qy. (h)
Finally, from Eq. (2-95) follows that
1 4 112 .
ZS:_Q_y (Q1~a—|— ga-Qg—l—QwL):—ga. 0]
Hence, for &/-profile the shear centre lies at a considerable distanstdeuthe profile. |

2.3.3 Shear stresses in closed thin-walled sections

Figure 2—14 shows a closed single-cell section of a thifeddbeam. The shear fordé(z, s)
acting within the wall per unit length of the beam (see FigL2}n a corresponding open section
is uniquely determined by Eg. (2-71) due to the condifit(x, 0) = Hy(x) = 0 at the boundary
s = 0. However, in a closed sectidii (x, s) is not a priori known in one or more points of the
peripheryT’;, for which reason the shear stresses cannot be determiidstatic equations
alone. Hence, a geometrical condition must be introduced fvhich the initial valued, () at

s = 0 can be determined. The derivation of this geometric comwliwvill be considered at first.

Oxs

Yy

Figure 2-14 Closed single-cell section exposed to bending.
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2.3 Shear stresses from bending 83

The arc-length coordinateis orientated clock-wise with an arbitrarily selected ari@.
Then, the localz, n, s)-coordinate system is orientated with theaxis orientated toward the
interior of the cell. The shear stress;(z, s) follows from Eqgs. (2-71) and (2—-73):

_ Ho(x)  Qy(2) _ Q:(2)

1
i) =T T W)L to),

where the static moments of the area segrfi¥r} are again given as

Saz(z, s) Say(x,s). (2-98a)

Ozs(T,8) =

Sgy(s):/o z(s)t(s)ds:/QZdA, SQZ(S):/O y(s)t(s)ds:/ﬂydA. (2-98b)

Equation (2—98a) is the equivalence of Grashof’s formw& & for a closed thin-walled section.
Unlike the case of the open sectidify (x) is generally different from zero and the determination
of Hy(x) is part of the problem.

The shear strain, in the local(z, n, s)-coordinate system is given by Eq. (2—76) which is
valid for open as well as closed thin-walled sections. Timplies the warping.,(x, s) defined
by Eq. (2-80), where it is recalled tha$(z, s) = 0 in the bending centr®. This is so, because
w, () has been defined as the total displacement inctd&ection of B. Now, for the closed
section, the displacement (x, s) must be continuous as a functionsoélong the periphery;.
The axial and bending contributionisg. the first three contributions on the right-hand side of
Eq. (2-77), are always continuous. A possible discontyrthién stems from the warping. If the
profile is open, as illustrated in Fig. 2—-12, the ends-at0 ands = L can move freely relatively
to each other. Hence, a warping discontinuity developséetthese two endpoints. However, in
a closed section, the warping of these points must be iddntience, the geometrical condition
can be formulated as

uzo(x,0) = u(x, L) = ugp(x). (2-99)
Insertion of Egs. (2-76) and (2-99) into Eq. (2—80) provides

L L
uo(x) = uo(z) +2 /O cas(@, 8)ds = up(z) + é /O Ht((”i’)s) ds =
L H(s) B H(s) - )
/o is) B ?{ i(s) =0 (2-100)

Insertion of Eq. (2—98a) gives the following formulatiortbé geometrical condition from which
the initial conditionH, can be determined:

ds Q. Sao Q Sa:
HO(x)fi‘l@_EélﬁdS_I_jél t(s)ds_o' (2-101)

With Hy(x) determined,H (x, s) and the shear stress(x, s) can next be determined from
Eqg. (2-98a).

Example 2.11 Shear stresses in a symmetric thin-walled single-cell section

Figure A shows a double-symmetric thin-walled single-petifile. The thickness is everywhete We
want to determine the shear stresses from a shear fpy@eting at the shear centre. (continued)
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The cross-sectional area and moment of inertia around-thés become

A = 8at,

I. = gaSt.

(@)

The origin of the arc length coordinate is chosen at the Idefécorner. The corresponding distribution
of the static momens. (s) = [ z(s)t(s)ds has been shown in Fig. B.

©)

ool

a?t

\

a

wlro

\/
Y

a

Wl

Figure A Geometry of the symmetric rectangular thin-walled singgé-section.

@ | %a2t
= 4
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B=S
y o7
La2¢
I y
—
@ ™ %azt

Figure B Distribution of the static momerfig, ., (s) in the symmetric rectangular thin-walled single-cell s@tt

Next, the following line integrals are calculated:

7
, bt

8a

—(a—|—3a+a—|—3a):T,

Ssz,z(s)ds

r, U

:1 z.la%. —1~3a-§a2t—§a2t-a—
t\3 8 2 2 2

Wl
| =

2
a’t-a

(b)

. §a2t) = —6a°. (c)

(continued)
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From Eq. (2-101) then follows that

8a Q 3 9 Q
Ho 22 — %Y (_643) =0 Hy = —— XY, d
o §a3t( ) = 0 20 at (d)
_ 1871
187’\\\ - . //
B=S

3T /l 3T
Qy

/ — — \
—187 7| v 187

Figure C Shear stresses in the symmetric rectangular thin-walleglesicell section withr = @, /(40at).

The distribution of shear stressess (z, s) follows from Eq. (2-98a) and has been indicated in Fig. C.
The arrows indicate the positive direction of the sheaisstrs. These will be referred to as #ear flow
in what follows, due to the analogous behaviour of water fhgrdown through a system of pipes. O

As shown in Example 2.11, a symmetric thin-walled singlkeckprofile exposed to a shear
force acting along the line of symmetry will have a symmettistribution of shear stresses.
Especially, the shear stress at the line of symmetry vasisHence, if the origin of arc-length
coordinate is placed at the line of symmetry we must hdyér) = 0, entailing that a single-
celled symmetric profile can be analysed from the static #opmalone.

For a thin-walled profile withV cells, arc-length parametess are introduced for all cells,
orientated clock-wise as shown in Fig. 2-15. The origihsOs, ..., Oy for the arc-length
coordinates are chosen arbitrarily. The shear forces pelanyth Hy;(z) at the origins are
unknown and must be determined from geometrical conditioreddition to the static shear
flow equations. Similarly to Eq. (2-99) these are determimethe conditions that the warping
must be continuous along all the peripheiigof the cells.

At first, the static momentSq, and S for the open profile in Fig. 2-15 are determined.
Especially, the variation g, (z, s;) andSq. (z, s;) alongl'; as a function of; are registered.
Next, the calculation of the shear force per unit lengtf{x, s,) within each cell can be arranged
as illustrated in Fig. 2-16. Firstly, the shear force pet lenigth H; (s;) of the open, branched
profile is calculated, orientated in the direction of the-@rgth coordinate;. This is given by
Grashof’s formula (2-74),e.

Hg;(s;) = _%Sﬁy(sj) - %’Sm(sj). (2-103)
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Tzs Hon

Figure 2-16 Arrangement of calculations of shear forces per unit lemgthin cells.
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2.3 Shear stresses from bending 87

In each cell, the initial conditions induce a constant sliieare per unit lengthd,;. Due to
the chosen sign convention, the net shear force on the @eyiisegment';;, between celjj and
cell k becomedd,; — Hyy. Hence, on this segment the total shear force per unit ldsggtbmes

Hj(s;) = Hs;j(s;) + Hoj — Hop. (2-104)
Continuity requires that Eq. (2—101) is fulfilled for &l cells,i.e.

H. .
f i) g 0, j—1,2,.. N (2-105)
t(s;)

Insertion of Eq. (2-104) leads to the followiny linear equations for the determination of
Ho1, Hoz, . .., Hon:
N

d Hs .
> (Hoj — Hok)/ 3] - J 3] ds;;  j=1,2,....N. (2-106)
k=1 J
The coefficient matrix in Eq. (2—106) is identical to this the determination of Prandtl’s stress
function.S; in the cells in the corresponding St. Venant torsion problgvith H,; determined

from Eq. (2 106)H;(s,) can be calculated from Eq. (2-104). Finally, the shears#ses s (s, )
follow from Eq. (2— 98a) with positive sign when acting in ttheection ofs;.

Example 2.12 Shear stresses in a single-symmetric double-cell section

The profile shown in Fig. A is identical to that considered kaBple 2.11. However, a partition with the
wall thicknesst has been included as shown in the figure. The bending céniseplaced as indicated.
Because the section is symmetric around4faxis the indicated coordinate system with originAns

a principal axis coordinate system. The section is stillomeol to a shear fora@, acting through the
shear centr&. Due to the symmetry the shear centre is placed orxtaeis (ys = 0). The z,s will be
determined as a part of the solution. The cross-sectioraland inertial around theaxis become

73

A = 9at, 1. = Za‘ t. (@)

)
i
)
ii
)
ii
we

(M}

a 2a

Figure A Geometry of the rectangular thin-walled double-cell secti

(continued)
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I
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@H1 S1 (4 52 (C;)\Hz
I I'o

Figure B Definition of the origins of the arc-length coordinates ia tiectangular thin-walled double-cell section.

o Tr— © “Qf
N ~/

Saz(s1) Sz (s2)

a?t %a2t @ T

2
a“t a2t

ool
ool
o0l

-/ \
a’t W ) ™ 42t

Figure C Distribution of the static moment$q . (s1) andSq (s2) in the rectangular thin-walled double-cell section.

The origin of the arc-length coordinates are chosen as stmWig. B. The static momentSg. (s1)
andSq: (s2) are next calculated with the sign and magnitude as indidatedy. C. Especially, it is seen
thatSa.(s1) = —Sa=(s2). The shear force per unit length in the open profile is giveify(2-103):

Hojls) = = S0.(s1), G=1.2 o)

Next, Eq. (2—106) provides

a a a a Hsj(s1)
(Hio Hzo)t + (H1o O)t + (Hio O)t + (H1o O)t - i) ds1, (©
2 2 " H;
(Hzo—O)—a—|—(HQo—O)g—l—(Hzo—O)—a—|—(H20—H10)E =— ﬂdsz- (d)
¢ ¢ t t L, U(s2)

The right-hand sides are calculated by insertion of Eq. (ith whe distribution ofSq.(s;) shown in
Fig. C. The results become

) 2 2 2 2 2
Ho(S1) jo o4 Qu (2 ot o at ol 2 at sat) 4Gy ©
t(s1) 7a32\3" 8 2 2 2 38 272 7t
Ty
Hs;(s2) 4Qy (20 o, 2 o 2 4 2 a*t 12 Q,
dsy = —= = dt4a-d’t+Za-d’t+ =ad’t— Sa— ) = = 2L f
L, t(s) T T\ g dtTerettgeatd et gey 7t ®

(continued)

DCE Lecture Notes No. 23



2.3 Shear stresses from bending 89

Then, the following solutions are obtained for the initialwes of the shear forces per unit length:

)

4 12
4H — 10 — Hy = 18y —H1o+6H20:———ny )]
7 a 7T a

which implies that

24 Qy
322 a’

20 —

8 Qy

Hio = 7322 4 )

Next, H;(s;) is calculated from Egs. (2—103) and (2—-104) along both peripsI’; andI'2. Finally, the
shear stresses,(s;) are computed from Eq. (2-98a). Due to the constant wall tieisk this reduces to

ouslsi) = THi(ss), G =12 ()

The flow of the shear stressess has been shown in Fig. E.

68T 24T 967
\ = — - /

—
88T
88T

237 88T 231 23

J — N
687 = 24 o

T 967

Figure D Distribution of the shear stresses in the rectangularwitied double-cell section with = Q,, /(322at).
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Figure E Shear forces in the wall segments of the rectangular thifedvaouble-cell section. (continued)
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Next, the shear force®1, Q2, Qs, Q4 and Qs in the wall segments shown in Fig. E are calculated.

These become:

Q1:%(96—88)~2a-t~3%%* 41823% 0
QQ:(QG“L;Z?’)'“'IS'%%_41183Qy’ 0
Qs = (112+2 23)-a-t~3%%—£;62y, (0
Q4:%(68—24)~a-t-3%%*43833Qy, (m)
Q5:(68+§'23)'a't 12188 % 711122% "

Itis seen tha): + Q3 + Qs = Q. The static equivalence (2—83) of the shear stresses idulitied.
The positionz, of the shear centre follows from Eq. (2—95):

14 4 80
Zs = o ((Q4 - Q1)a—Q2- ga—i—Q —a+Q5—a) = Zs = " T19% (0)
The position of the shear centre has been illustrated inEig. a

Example 2.13 Distribution of shear stresses in open and closed sections due to bending and
St. Venant torsion

I—<—<—<—<— —>—>—>T<—4—4—
J |

ol | Q Q
v
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v + + + v +
" ! I IR H
I
L [ EOEDED) PGNP NP

M, M,

v * t v v x|t t
v ') t + + ')1 t
v t v v t t
v t + + 1 1
[erqurqurqurqurquret (M Nt g

Figure A Shear flow in open and closed sections due to transversefshess and torsional moments.

Fig. A shows the shear flow in open and closed thin-walled@esexposed to a transverse shear fapce
or a torsional moment/. For closed sections the shear stresse$z, s) are uniformly distributed over

the wall thickness for both loadings. For open section thianly the case in the case for the shear force
loading, whereas the shear stresses for St. Venant torsilamearly varying in the thickness direction

around the mid-line of the wall. a
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2.4 Summary

The computation of shear stresses in beams has been thedbthis chapter with detailed
explanation of the theory for thin-walled sections sulgddb torsion and/or bending. A brief
summary of the main findings is given in the following.

Uncoupling of bending and torsionrequires that the shear force acts through the so-called she
centre. The shear centre always lies on a line of symmethjimé symmetric cross-section.
Hence, the position of the shear centre coincides with thitteobending centre for double-
symmetric sections.

St. Venant torsionis characterised by the fact that the beam is allows to warglyr leading
to a homogeneous twist of the cross-section along the be&n Blxe homogenous torsion
problem can be defined in terms of the warping function ogeratively, in terms of Prandtl’s
stress function.

Shear stresses due to homogeneous torsiary linearly over the thickness of the wall in open
thin-walled profiles. However, in a closed thin-walled sactwith one or more cells, the
shear stresses due homogeneous torsion is homogeneotisetreéckness.

Homogeneous torsion induces warping a beam. The warping increases linearly with the tor-
sional moment. However, in a circular profile (a cylinder asllvas a tube) there is no
warping.

The torsional stiffnesses of open and closed cross-seatiare different. Thus, a closed cross-
section has a much higher torsional stiffness than an oss-ection with a similar cross-
sectional area. Likewise, the ultimate strength of a clasetion is higher than that of a
similar open section.

Shear stresses from bendingan generally be analysed by means of the so-called strass fu
tion. However, this requires the use of a numerical schengethe finite-element method.

Grashof’s formula defines the shear stresses from bending in open thin-wadletibes. For
closed thin-walled sections, Grashof’s formula must bestéd be an additional term that

Warping takes place due to bendingince the shear stresses are accompanied by shear strains.
For a rectangular cross-section, the beam warps into am$esh

Shear flow is a graphical interpretation of the direction in which thear stresses are acting on
the cross-section of a beam. In the case of bending, thissfamanalogy to water streaming
down a system of pipes.

Internal walls in a section will not increase the torsional stiffness and strength ificantly.
However, the inclusion of an internal wall oriented in theedtion of the shear force will
provide an increase of the shear strength and stiffness.

The theory presented in this chapter can be used for thendietiion of the shear stresses
and warping deformations in beams subjected to any combmat bending and homogeneous
torsion. However, if torsion is preventeel.g.at one end of the beam, another theory must be
applied as described in the next chapter.
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