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Preface

This textbook has been written for the course Statics IV on spatial elastic beam structures
given at the 5th semester of the undergraduate programme in Civil Engineering at Aalborg Uni-
versity. The book provides a theoretical basis for the understanding of the structural behaviour
of beams in three-dimensional structures. In the course, the text is supplemented with labora-
tory work and hands-on exercises in commercial structural finite-element programs as well as
MATLAB . The course presumes basic knowledge of ordinary differential equations and struc-
tural mechanics. A prior knowledge about plane frame structures is an advantage though not
mandatory. The authors would like to thank Mrs. Solveig Hesselvang for typing the manuscript.

Aalborg, August 2008 Lars Andersen and Søren R.K. Nielsen
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CHAPTER 1
Beams in three dimensions

This chapter gives an introduction is given to elastic beamsin three dimensions. Firstly, the
equations of equilibrium are presented and then the classical beam theories based on Bernoulli-
Euler and Timoshenko beam kinematics are derived. The focusof the chapter is the flexural de-
formations of three-dimensional beams and their coupling with axial deformations. Only a short
introduction is given to torsional deformations, or twist,of beams in three dimensions. A full de-
scription of torsion and shear stresses is given in the next chapters. At the end of this chapter, a
stiffness matrix is formulated for a three-dimensional Timosheko beam element. This element can
be used for finite-element analysis of elastic spatial framestructures.

1.1 Introduction

In what follows, the theory of three-dimensional beams is outlined.

1.2 Equations of equilibrium for spatial beams

An initially straight beam is considered. When the beam is free of external loads, the beam
occupies a so-called referential state. In the referentialstate the beam is cylindrical with the
lengthl, i.e. the cross-sections are everywhere identical. The displacement and rotation of the
beam is described in a referential(x, y, z)-coordinate system with base unit vectors{i, j,k}, the
origin O placed on the left end-section, and thex-axis parallel with the cylinder and orientated
into the beam, see Fig. 1–1. For the time being, the position of O and the orientation of they-
andz-axes may be chosen freely.

The beam is loaded by a distributed load per unit length of thereferential scale defined by
the vector fieldq = q(x) and a distributed moment load vector per unit lengthm = m(x). A
differential beam element of the lengthdx is then loaded by the external force vectorqdx and
external moment vectormdx as shown in Fig. 1–1. The length of the differential beam element
may change during deformations due to axial strains. However, this does not affect the indicated
load vectors which have been defined per unit length of the referential state. Measured in the
(x, y, z)-coordinate system,q andm have the components

q =





qx

qy

qz



 , m =





mx

my

mz



 . (1–1)

— 1 —



2 Chapter 1 – Beams in three dimensions

i

j

k

x

y

z

idx

qdx mdx

dx

l

−M

M + dM

−F

F + dF

Figure 1–1 Beam in referential state.

As a consequence of the external loads, the beam is deformed into the so-called current state
where the external loads are balanced by an internal sectionforce vectorF = F(x) and an
internal section moment vectorM = M(x). These vectors act on the cross-section with the base
unit vectori of the x-axis as outward directed normal vector. With reference to Fig. 1–2, the
components ofF andM in the(x, y, z)-coordinate system are:

F =





N
Qy

Qz



 , M =





Mx

My

Mz



 (1–2)

Here,N = N(x) is theaxial force, whereas the componentsQy = Qy(x) andQz = Qz(x) sig-
nify theshear forcecomponents in they- andz-directions. The axial componentMx = Mx(x) of
the section moment vector is denoted thetorsional moment. The componentsMy = My(x) and
Mz = Mz(x) in they- andz-directions represent thebending moments. The torsional moment
is not included in two-dimensional beam theory. However, inthe design of three-dimensional
frame structures, a good understanding of the torsional behaviour of beams is crucial.

Assuming that the displacements remain small, the equationof static equilibrium can be
established in the referential state. With reference to Fig. 1–1, the left end-section of the element
is loaded with the section force vector−F and the section moment vector−M. At the right
end-section, these vectors are changed differentially into F + dF andM + dM, respectively.
Force equilibrium and moment equilibrium formulated at thepoint of attack of the section force
vector−F at the left end-section then provides the following equations of force and moment

DCE Lecture Notes No. 23



1.2 Equations of equilibrium for spatial beams 3

x

y

z

Mx

My

Mz

N

Qy

Qz

Figure 1–2 Components of the section force vector and the section moment vector.

equilibrium of the differential beam element:

−F + F + dF + qdx = 0 ⇒

dF

dx
+ q = 0 (1–3a)

−M + M + dM + idx × (F + dF) + mdx = 0 ⇒

dM

dx
+ i × F + m = 0 (1–3b)

From Eqs. (1–1) and (1–2) follows that Eqs. (1–3a) and (1–3b)are equivalent to the following
component relations:

dN

dx
+ qx = 0,

dQy

dx
+ qy = 0,

dQz

dx
+ qz = 0, (1–4a)

dMx

dx
+ mx = 0,

dMy

dx
− Qz + my = 0,

dMz

dx
+ Qy + mz = 0. (1–4b)

At the derivation of Eq. (1–4b), it has been utilised that

i × F = i × (N i + Qyj + Qzk) = N i× i + Qyi × jQzi × k = 0i− Qzj + Qyk. (1–5)

Hence,i×F has the components{0,−Qz, Qy}. It is noted that a non-zero normal-force compo-
nent is achieved when the moment equilibrium equations are formulated in the deformed state.
This may lead to coupled lateral-flexural instability as discussed in a later chapter.

1.2.1 Section forces and stresses in a beam

On the cross-section with the outward directed unit vector co-directional to thex-axis, the normal
stressσxx and the shear stressesσxy andσxz act as shown in Fig. 1–3. These stresses must be

Elastic Beams in Three Dimensions



4 Chapter 1 – Beams in three dimensions

statically equivalent to the components of the force vectorF and the section moment vectorM

as indicated by the following relations:

N =

∫

A

σxxdA, Qy =

∫

A

σxydA, Qz =

∫

A

σxzdA, (1–6a)

Mx =

∫

A

(σxzy − σxyz)dA, My =

∫

A

zσxxdA, Mz = −

∫

A

yσxxdA. (1–6b)

x

y

z

dA
Mx

My

Mz

N

Qy

Qz

σxx

σxy

σxz

Figure 1–3 Stresses and stress resultant on a cross-section of the beam.

x

y

z

dx

dy

dz

σxx

σyy

σzz

σxy

σyx

σxz

σzx

σyz

σzy

Figure 1–4 Components of the stress tensor.

On sections orthogonal to they- andz-axes, the stresses{σyy, σyx, σyz} and{σzz, σzx, σzy}
act as shown in Fig. 1–4. The first index indicates the coordinate axis co-directional to the
outward normal vector of the section, whereas the second index specifies the direction of action
of the stress component. The stresses shown in Fig.1–4 form the components of the stress tensor
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1.2 Equations of equilibrium for spatial beams 5

σ in the(x, y, z)-coordinate system given as

σ =





σxx σyx σzx

σxy σyy σzy

σxz σyz σzz



 . (1–7)

Moment equilibrium of the cube shown in Fig. 1–4 requires that

σxy = σyx, σxz = σzx, σyz = σzy. (1–8)

Hence,σ is a symmetric tensor.

1.2.2 Kinematics and deformations of a beam

The basic assumption in the classical beam theory is that a cross-section orthogonal to thex-axis
at the coordinatex remains plane and keeps its shape during deformation. In other words, the
cross-section translates and rotates as a rigid body. Especially, this means that Poisson contrac-
tions in the transverse direction due to axial strains are ignored. Hence, the deformed position
of the cross-section is uniquely described by a position vector w = w(x) and a rotation vector
θ = θ(x) with the following components in the(x, y, z)-coordinate system:

w =





wx

wy

wz



 , θ =





θx

θy

θz



 . (1–9)

Further, only linear beam theory will be considered. This means that the displacement compo-
nentswx, wy andwz in Eq. (1–9) all small compared to the beam lengthl. Further the rotation
componentsθx, θy andθz are all small. Especially, this means that

sin θ ≃ tan θ ≃ θ, (1–10)

whereθ represents any of the indicated rotation components measured in radians. The various
displacement and rotation components have been illustrated in Fig. 1–5. The rotation component
around thex-axis is known as the twist of the beam.

Now, a material point on the cross-section with the coordinates(x, y, z) in the referential
state achieves a displacement vectoru = u(x, y, z) with the components{ux, uy, uz} in the
(x, y, z)-coordinate system given as (see Fig. 1–5):

ux(x, y, z) = wx(x) + zθy(x) − yθz(x), (1–11a)

uy(x, y, z) = wy(x) − zθx(x), (1–11b)

uz(x, y, z) = wz(x) + yθx(x). (1–11c)

It follows that the displacement of any material point is determined if only the 6 components of
w(x) andθ(x) are known at the beam coordinatex. Hence, the indicated kinematic constraint
reduces the determination of the continuous displacement fieldu = u(x, y, z) to the determina-
tion of the 6 deformation componentswx = wx(x), wy = wy(x), wz = wz(x), θx = θx(x),
θy = θy(x) andθz = θz(x) of a single spatial coordinate along the beam axis.

Elastic Beams in Three Dimensions



6 Chapter 1 – Beams in three dimensions

x

xx

y

y

y

z

z

z

dwy

dx
dwz

dx

wxwx

wy wz

θx

−θyθz

Figure 1–5 Deformation components in beam theory.

The strains conjugated toσxx, σxy andσxz are the axial strainεxx and the angular strains
γxy = 2εxy andγxz = 2εxz. They are related to displacement components as follows:

εxx =
∂ux

∂x
=

dwx

dx
+ z

dθy

dx
− y

dθz

dx
, (1–12a)

γxy =
∂ux

∂y
+

∂uy

∂x
=

dwy

dx
− z

dθx

dx
− θz(x), (1–12b)

γxz =
∂ux

∂z
+

∂uz

∂x
=

dwy

dx
+ y

dθx

dx
+ θy(x). (1–12c)

From Eq. (1–12) follows thatγxy = γxy(x, z) is independent ofy as a consequence of the
presumed plane deformation of the cross-section. Then, theshear stressσxy = σxy(x, z) must
also be constant over the cross-section. Especially,σxy 6= 0 at the upper and lower edge of the
cross-section as illustrated in Fig. 1–6a. However, if the cylindrical surface is free of surface
shear tractions, thenσyx = 0 at the edge. Hence,σxy 6= σyx in contradiction to Eq. (1–8).
In reality σxy = 0 at the edges, corresponding toγxy = 0. This means that the deformed
cross-section forms a right angle to the cylindrical surface as shown in Fig. 1–6b.

The displacement fields Eq. (1–11) are only correct for beamswith cross-sections which are
circular symmetric around thex-axis. In all other cross-sections, the torsional momentMx will

DCE Lecture Notes No. 23



1.2 Equations of equilibrium for spatial beams 7

x x

y y

z z

dwy

dx

dwy

dx

wx wx

wy wy

σxyσxy

σyx
γxy

(a) (b)

Figure 1–6 Shear stresses on deformed beam section: (a) Deformation ofcross-section in beam theory and (b) real
deformation of cross-section.

induce an additional non-planar displacement in thex-axis, which generally can be written in the
form ux(x, y, z) = ω(y, z)dθx/dx. This is illustrated in Fig. 1–7. Hence, the final expression
for the axial displacement reads

ux(x, y, z) = wx(x) + zθy(x) − yθz(x) + ω(y, z)
dθx

dx
. (1–13)

The expressions foruy anduz in Eq. (1–11) remain unchanged, andω(y, z) is called thewarp-
ing function. Whereasy and z in Eq. (1–13) may be considered as shape functions for the
deformations caused by the rotationsθz(x) andθy(x), the warping function is a shape function
defining the axial deformation of the cross-section from therotation component. The definition
and determination of the warping function is considered in asubsequent section.

Deformed bottom flange

Deformed top flange Undeformed state
Section A–A

Section B–BA

A

B

B

Figure 1–7 Warping deformations in an I-beam induced by homogeneous torsion. The cross sections A–A and B–B are
shown with the top flange on the left and the bottom flange on theright.

As a consequence of the inclusion of the warping, the strain components in Eq. (1–12) are
modified as follows:

εxx =
∂ux

∂x
=

dwx

dx
+ z

dθy

dx
− y

dθz

dx
+ ω

d2θx

dx2
, (1–14a)

γxy =
∂ux

∂y
+

∂uy

∂x
=

dwy

dx
− θz +

(

∂ω

∂y
− z

)

dθx

dx
, (1–14b)

γxz =
∂ux

∂z
+

∂uz

∂x
=

dxz

dx
+ θy +

(

∂ω

∂z
+ y

)

dθx

dx
. (1–14c)

Elastic Beams in Three Dimensions



8 Chapter 1 – Beams in three dimensions

xx
y

y z

z

dwy

dx
dwz

dx

wxwx

wy wz

−θyθz

Figure 1–8 Kinematics of Bernoulli-Euler beam theory.

Bernoulli-Euler beam kinematics presumes that the rotatedcross-section is always orthogo-
nal to the deformed beam axis. This involves the following additional kinematical constraints on
the deformation of the cross-section (see Fig. 1–8):

θy = −
dwz

dx
, θz =

dwy

dx
. (1–15)

Assuming temporarily thatθx ≡ 0 in bending deformations,i.e. disregarding the twist of the
beam, Eqs. (1–14) and (1–15) then provide:

γxy = γxz = 0. (1–16)

Equation (1–16) implies that the shear stresses areσxy = σxz = 0, and in turn that the shear
forces becomeQy = Qz = 0, cf. Eq. (1–6). However, non-zero shear forces are indeed present
in bending of Bernoulli-Euler beams. The apparent paradox is dissolved by noting that the shear
forces in Bernoulli-Euler beam theory cannot be derived from the kinematic condition, but has
to be determined from the static equations.

The development of the classical beam theory is associated with names like Galilei (1564–1642),
Mariotte (1620–1684), Leibner (1646–1716), Jacob Bernoulli (1654–1705), Euler (1707–1783),
Coulomb (1736–1806) and Navier (1785–1836), leading to thementioned Bernoulli-Euler beam
based on the indicated kinematic constraint. The inclusionof transverse shear deformation was
proposed in 1859 by Bresse (1822–1883) and extended to dynamics in 1921 by Timoshenko (1878–
1972). Due to this contribution, the resulting beam theory based on the strain relations Eq. (1–12),
is referred to as Timoshenko beam theory (Timoshenko 1921).

The first correct analysis of torsion in beams was given by St.Venant (1855). The underlying
assumption was thatdθx/dx in Eq. (1–13) was constant, so the warping in all cross-sections
become identical. Then, the axial strainεxx from torsion vanishes and the distribution of the
shear strainsγxy andγxz are identical in all sections. Because of this, St. Venant torsion is also
referred to ashomogeneous torsion.

DCE Lecture Notes No. 23



1.2 Equations of equilibrium for spatial beams 9

Whenever the twist or the warping is prevented at one or more cross-sections,dθx/dx is no
longer constant as a function ofx. Hence, axial strains occur and, as a consequence of this,
axial stresses arise and the shear strains and shear stresses are varying along the beam. These
phenomena were systematically analysed by Vlasov (1961) for thin-walled beams, for which
reason the resulting theory is referred to asVlasov torsionor non-homogeneous torsion. Notice
that the shear stresses from Vlasov torsion have not been included in the present formulation.
These will be considered in a subsequent chapter.

Seen from an engineering point of view, the primary advantage of Vlasov torsion theory is that it
explains a basic feature of beams, namely thatprevention of warping leads to a much stiffer struc-
tural elementsthan achieved in the case of homogeneous warping,i.e. a given torsional moment
will induce a smaller twist. Warping of the cross-section may, for example, be counteracted by the
inclusion of a thick plate orthogonal to the beam axis and welded to the flanges and the web. The
prevention of torsion in this manner is particularly usefulin the case of slender beams with open
thin-walled cross-sections that are prone to coupled flexural–torsional buckling. Obviously, Vlasov
torsion theory must be applied for the analysis of such problems as discussed later in the book.

Next, the deformation of the cross-section may be decomposed into bending and shear com-
ponents. The bending components are caused by the bending momentsMy andMz and deform
as a Bernoulli-Euler beam. Hence, the bending components are causing the rotationsθy andθz

of the cross-section. The shear components are caused by theshear forcesQy andQz. These
cause the angular shear strainsγxy andγxz without rotating the cross-section. Further, the dis-
placement of the beam axis in shear takes place without curvature. Hence, the curvature of the
beam axis is strictly related to the bending components, seeFig. 1–9.

With reference to Fig. 1–10, the radii of curvaturesry and rz are related to the rotation
incrementsdθz and−dθy of the end-sections in the bending deformations of a differential beam
element of the lengthdx as follows

rydθz = dx

−rzdθy = dx







⇒







κy = −1/rz = dθy/dx

κz = 1/ry = dθz/dx
(1–17)

Here,κy andκz denote the components of the curvature vectorκ of thex-axis. Especially, for a
Bernoulli-Euler beam the curvature components become, cf.Eq. (1–15),

κy = −
d2wz

dx2
, κz =

d2wy

dx2
. (1–18)

From Eqs. (1–14) and (1–17) follows that the axial strain maybe written as

εxx(x, y, z) = ε(x) + zκy(x) − yκz(x) + ω(y, z)
d2θx

dx2
, (1–19)

whereε(x) denotes the axial strain of the beam along thex-axis given as

ε(x) =
dwx

dx
. (1–20)

Here,ε(x), κy(x) andκy(x) define the axial strain and curvatures of the beam axis,i.e. the
(x)-axis.

Elastic Beams in Three Dimensions



10 Chapter 1 – Beams in three dimensions

=

+

x

x

x

y

y

y

z

z

z

Mz

Qy

γxy

γxy

Figure 1–9 Decomposition of cross-section deformation into bending and shear components.

xx
y

y z

z

ds ≈ dx ds ≈ dx

ry rz

wy wz

−dθydθz

Figure 1–10 Definition of curvature.

1.2.3 Constitutive relations for an elastic beam

In what follows we shall refer toN(x), Qy(x), Qz(x), Mx(x), My(x) andMz(x) asgeneralised
stresses. These are stored in the column matrix

σ(x) =

















N(x)
Qy(x)
Qz(x)
Mx(x)
My(x)
Mz(x)

















. (1–21)
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1.2 Equations of equilibrium for spatial beams 11

The internal virtual work of these quantities per unit length of the beam is given as

δω = Nδε + Qyδγxy + Qzδγxz + Mxδθx + Myδκy + Mzδκz = σ
T δε, (1–22)

where

ε(x) =

















ε(x)
γxy(x)
γxz(x)
θx(x)
κy(x)
κz(x)

















. (1–23)

The components ofε(x) are referred to as thegeneralised strains. The components ofσ(x) and
ε(x) are said to be virtual work conjugated because these quantities define the internal virtual
work per unit length of the beam.

Let E andG denote the elasticity modulus and the shear modulus. Then, the normal stress
σxx and the shear stressesσxy andσxz may be calculated from Eq. (1–14) as follows:

σxx = Eεxx = E

(

dwx

dx
+ z

dθy

dx
− y

dθz

dx
+ ω(y, z)

d2θx

dx2

)

, (1–24a)

σxy = Gγxy = G

(

dwy

dx
− θz +

(

∂ω

∂y
− z

)

dθx

dx

)

, (1–24b)

σxz = Gγxz = G

(

dw2

dx
+ θy +

(

∂ω

∂z
+ y

)

dθx

dx

)

. (1–24c)

By integration over the cross-sectional area, it then follows that

N = E

(

A
dwx

dx
+ Sy

dθy

dx
− Sz

dθ2

dx
+ Sω

d2θx

dx2

)

, (1–25a)

Qy = G

(

Ay

(

dwy

dx
− θz

)

+ Ry
dθx

dx

)

, (1–25b)

Qz = G

(

Az

(

dwz

dx
+ θy

)

+ Rz
dθx

dx

)

, (1–25c)

Mx = G

(

Sz

(

dwz

dx
+ θy

)

− Sy

(

dwy

dx
− θz

)

+ K
dθx

dx

)

, (1–25d)

My = E

(

Sy
dwx

dx
+ Iyy

dθy

dx
− Iyz

dθz

dx
+ Iωz

dθx

dx

)

, (1–25e)

Mz = E

(

−Sz
dwx

dx
− Iyz

dθy

dx
+ Izz

dθz

dx
− Iωy

dθx

dx

)

, (1–25f)

whereAy, Az, Ry, Rz , Sy, Sz, Sω, K, Iyy, Izz , Iyz = Izy, Iωy andIωz are cross-sectional (or
geometrical) constants identified as:

A =

∫

A

dA, Ay = αyA, Az = αzA, (1–26a)

Elastic Beams in Three Dimensions



12 Chapter 1 – Beams in three dimensions

Ry =

∫

A

(

∂ω

∂y
− z

)

dA, Rz =

∫

A

(

∂ω

∂z
+ y

)

dA, (1–26b)

Sy =

∫

A

zdA, Sz =

∫

A

ydA, Sω =

∫

A

ωdA, (1–26c)

Iyy =

∫

A

z2dA, Izz =

∫

A

y2dA, (1–26d)

Iyz =

∫

A

yzdA, Iωy =

∫

A

ωydA, Iωz =

∫

A

ωzdA, (1–26e)

K =

∫

A

(

y2 + z2 + y
∂ω

∂z
− z

∂ω

∂y

)

dA. (1–26f)

Here,A is the cross-sectional area, whereasAy andAz signify the so-called shear areas. Beam
theory presumes a constant variation of the shear stresses in bending, whereas the actual variation
is at least quadratic. The constant variation results in an overestimation of the stiffness against
shear deformations, which is compensated by the indicated shear reduction factorsαy andαz. If
the actual distribution of the shear stresses is parabolic,these factors becomeαy = αz = 5/6.
For anI-profile, the shear area is approximately equal to the web area.

For GAy → ∞ we haveγxy = Qy/(GAy) = 0. Bernoulli-Euler beam theory is charac-
terised byγxy = 0. Hence, Timoshenko theory must converge towards Bernoulli-Euler theory
for the shear areas passing towards infinity. The magnitude of the shear deformations in propor-
tion to the bending deformations depends on the quantity(h/l)2, whereh is the height andl is
the length of the beam. This relation is illustrated in Example 1-3.

Ry andRz are section constants which depend on the warping mode shapeω(y, z) as well
as the bending modes viay andz. Further, the section constantsSy andSz are denoted the static
moments around they- andz-axes.Sω specifies a corresponding static moment of the warping
shape function.

Iyy andIzz signify thebending moments of inertiaaround they- andz-axes, respectively.
Iyz is denoted thecentrifugal moment of inertia, whereasIωy andIωz are the corresponding
centrifugal moments of the warpingshape function and the bending mode shapes.

K is the so-calledtorsion constant. This defines merely the torsional stiffness in St. Venant
torsion. As mentioned above, the additional contribution to Mx from Vlasov torsion will be
considered in a subsequent section.

1.3 Differential equations of equilibrium for beams

In what follows, the governing differential equations for Timoshenko and Bernoulli-Euler beams
are derived. At this stage, the twistθx and the torsional momentMx are ignored. With no further
assumptions and simplifications, Eq. (1–25) reduces to













N
My

Mz

Qy

Qz













=













EA −ESy −ESz 0 0
ESy EIyy −EIyz 0 0

−ESz −EIyz EIzz 0 0
0 0 0 GAy 0
0 0 0 0 GAz

























dwx/dx
dθy/dx
dθz/dx

dwy/dx − θz

dwz/dx + θy













. (1–27)
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1.3 Differential equations of equilibrium for beams 13

The coefficient matrix of Eq. (1–27) is symmetric. When formulated in a similar matrix format,
the corresponding matrix in Eq. (1–25) is not symmetric. This is a consequence of the ignorance
of the Vlasov torsion inMx.

1.3.1 Governing equations for a Timoshenko beam

Next, Eq. (1–27) is inserted into the equilibrium equations(1–4a) and (1–4b), which results in
the following system of coupled ordinary differential equations for the determination ofwx, wy ,
wz , θy andθz:













dN/dx
dMy/dx
dMz/dx
dQy/dx
dQz/dx













=













0
Qz

−Qy

0
0













−













qx

my

mz

qy

qz













⇒

d

dx

























EA ESy −ESz 0 0
ESy EIyy −EIyz 0 0

−ESz −EIyz EIzz 0 0
0 0 0 GAy 0
0 0 0 0 GAz

























dwx/dx
dθy/dx
dθz/dx

dwy/dx − θz

dwz/dx + θy

























=













0 0 0 0 0
0 0 0 0 GAz

0 0 0 −GAy 0
0 0 0 0 0
0 0 0 0 0

























dwx/dx
dθy/dx
dθz/dx

dθz/dx − θz

dwz/dx + θy













−













qx

my

mz

qy

qz













. (1–28)

Equation (1–28) specifies the differential equations for Timoshenko beam theory. These should
be solved with proper boundary condition at the end-sections of the beam. Letx0 denote the
abscissa of any of the two end-sections,i.e.x0 = 0 or x0 = l, wherel is the length of the beam.
At x = x0 either kinematical or mechanical boundary conditions may be prescribed.

Kinematical boundary conditions mean that values ofwx, wy, wz, θy andθz are prescribed,

wx(x0) = wx,0

wy(x0) = wy,0

wz(x0) = wz,0

θy(x0) = θy,0

θz(x0) = θz,0























, x0 = 0, l, (1–29)

whereas mechanical boundary conditions imply the prescription of N , Qy, Qz, My andMz,

N(x0) = N0

Qy(x0) = Qy,0

Qz(x0) = Qz,0

My(x0) = My,0

Mz(x0) = Mz,0























, x0 = 0, l. (1–30)
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14 Chapter 1 – Beams in three dimensions

In Eq. (1–30), the left-hand sides are expressed in kinematical quantities by means of Eq. (1–27).
Of the 10 possible boundary conditions atx = x0 specified by Eqs. (1–35) and (1–30), only 5
can be specified. The 5 boundary conditions atx0 = 0 andx0 = l can be selected independently
from Eq. (1–35) and Eq. (1–30).

With given boundary conditions Eq. (1–28) can be solved uniquely for the 5 kinematic quan-
tities wx, wy, wz, θy, θz, which make up the degrees of freedom of the cross-section. Although
an analytical solution may be cumbersome, a numerical integration is always within reach.

1.3.2 Governing equations for a Bernoulli-Euler beam

Next, similar differential equations are specified for a Bernoulli-Euler beam. At first the shear
forcesQy andQz in the equations of equilibrium forMy andMz in Eq. (1–4b) are eliminated
by means of the 2nd and 3rd equations in Eq. (1–4a):

d2My/dx2 − dQz/dx + dmy/dx = 0

d2Mz/dx2 + dQy/dx + dmz/dx = 0







⇒







d2My/dx2 + qz + dmy/dx = 0

d2Mz/dx2 − qy + dmz/dx = 0.
(1–31)

Using the Bernoulli-Euler kinematical constraint Eq. (1–15), the constitutive equations for the
resulting section forces may be written as





N
My

Mz



 =





EA ESy −ESz

ESy EIyy −EIyz

−ESzz −EIyz EIzz









dwx/dx
−d2wz/dx2

d2wy/dx2



 . (1–32)

Then, the equations of equilibrium Eq. (1–4a) and Eq. (1–31)may be recasted as the following
system of coupled ordinary differential equations

d

dx

(

EA
dwx

dx
− ESy

d2wz

dx2
− ESz

d2wy

dx2

)

+ qx = 0, (1–33a)

d2

dx2

(

ESy
dwx

dx
− EIyy

d2wz

dx2
− EIyz

d2wy

dx2

)

+ qz +
dmy

dx
= 0, (1–33b)

d2

dx2

(

−ESz
dwx

dx
+ EIyz

d2wz

dx2
+ EIzz

d2wy

dx2

)

+ qy +
dmz

dx
= 0. (1–33c)

The governing equations (1–33) should be solved with 5 of thesame boundary conditions as
indicated by Eqs. (1–35) and (1–30). The difference is thatθy(x0), θz(x0), Qy(x0) andQz(x0)
are represented as, cf. Eqs. (1–4b) and (1–15),

−
dwz(x0)

dx
= θy,0,

dwz(x0)

dx
= θz,0, (1–34a)

−
dMz(x0)

dx
− mz(x0) = Qy,0,

dMy(x0)

dx
+ my(x0) = Qz,0. (1–34b)
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1.4 Uncoupling of axial and bending deformations 15

With this in mind, the kinematic boundary conditions for Bernoulli-Euler beams are given in the
form

wx(x0) = wx,0

wy(x0) = wy,0

wz(x0) = wz,0

dwz(x0)/dx = θy,0

dwy(x0)/dx = θz,0























, x0 = 0, l, (1–35)

whereas the mechanical boundary conditions defined in Eq. (1–30) are still valid.

1.4 Uncoupling of axial and bending deformations

Up to now the position of the originO and the orientation of they- andz-axes in the cross-
section have been chosen arbitrarily. As a consequence of this, the deformations from the axial
force and the deformation from the bending momentsMy andMz will generally be coupled.
This means that the axial forceN referred to the originO will not merely induce a uniform
displacementwx of the cross-section, but also non-zero displacementswy andwz of O as well
as rotationsθy andθz. Similarly, the bending momentMy will not merely cause a displacement
wy and a rotationθy of the cross-section, but also a non-zero displacementwy and a rotationθz

in the orthogonal direction in addition to an axial displacementwy of the origin. The indicated
mechanical couplings are the reason for the couplings in thedifferential equations (1–28) and
(1–33). The couplings may have a significant impact on the structural behaviour and stability of
an engineering structure and the position of the origin for agiven beam element as well as the
orientation of the coordinate axes must be implemented correctly in a computational model.

In this section, two coordinate transformations will be indicated, in which the axial force re-
ferred to the new originB, called thebending centre, only induces a uniform axial displacement
over the cross-section. Similarly, the bending momentsMy andMz around the new rotatedy-
andz-axes, referred to as theprincipal axes, will only induce the non-zero deformation compo-
nents(wz , θy) and(wy , θz), respectively. Especially, the moments will induce the displacement
wx = 0 of the bending centre,B.

1.4.1 Determination of the bending centre

The position of the bending centreB is given by the position vectorrB with the components
{0, yB, zB} in the(x, y, z)-coordinate system. In order to determine the componentsyB andzB,
a translation of the(x, y, z)-coordinate system to a new(x′, y′, z′)-coordinate system with origin
in the yet unknown bending centre is performed (see Fig. 1–11). The relations between the new
and the old coordinates read

x = x′, y = y′ + yB, z = z′ + zB, (1–36)

In the new coordinate system, the displacement ofB (the new origin) in thex′-direction (the
new beam axis) becomes (see Fig. 1–11):

w′

x = wx + zBθy − yBθz. (1–37)

Elastic Beams in Three Dimensions
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θy, My

θz , Mz

θ′y, M ′

y

θ′z , M ′

z

N

N ′

y

z

y′

z′

yB

zB

O

B

rB

Figure 1–11 Translation of coordinate system.

The axial strain of fibres placed on the new beam axis becomes

ε′(x′) =
dw′

dx′
=

dw′

dx
= ε + zBκy − yBκz, (1–38)

where Eq. (1–17), Eq. (1–20) and Eq. (1–37) have been used. The components of the rotation
vectorθ of the cross-section are identical,i.e.

θ′x = θx, θ′y = θy, θ′z = θz. (1–39)

In turn, this means that the components of the curvature vector κ in the two coordinate systems
are identical as well

κ′

y =
dθ′y
dx′

=
dθy

dx
= κy, κ′

z =
dθ′z
dx′

=
dθz

dx
= κz. (1–40)

Further, the components of the section force vectorF in the two coordinate systems become
identical,i.e.

N ′ = N, Q′

y = Qy Q′

z = Qz. (1–41)

As a consequence of referring the axial forceN = N ′ to the new originB, the components
of the section vector in the(x′, y′, z′)-coordinate system are related to the components in the
(x, y, z)-coordinate as follows:

M ′

x = Mx, M ′

y = My − zBN, M ′

z = Mz + yBN. (1–42)

Equations (1–38) and (1–40) provide the following relationfor ε in terms ofε′, κ′

y andκz:

ε = ε′ − zBκy + yBκz = ε′ − zBκ′

y + yBκ′

z. (1–43)
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1.4 Uncoupling of axial and bending deformations 17

Then the relation between{N, My, Mz} and{N ′, M ′

y, M
′

z} and{ε, κy, κz} and{ε′, κ′

y, κz}
may be specified in the following matrix formulation:

σ
′ = AT

σ, (1–44a)

ε = Aε
′, (1–44b)

where

σ =





N
My

Mz



 , ε =





ε
κy

κz



 , (1–45a)

σ
′ =





N ′

M ′

y

M ′

z



 , ε
′ =





ε′

κ′

y

κ′

y



 , (1–45b)

A =





1 −zB yB

0 1 0
0 0 1



 . (1–45c)

The components{N, My, Mz} and{ε, κy, κz} of σ andε may be interpreted as work conjugated
generalised stresses and strains.

With reference to Eq. (1–32), the constitutive relation betweenσ andε is given as

σ = Cε, (1–46)

whereC denotes the constitutive matrix,

C = E





A Sy −Sz

Sy Iyy −Iyz

−Sz −Iyz Izz



 . (1–47)

Likewise, the constitutive relation in the(x′, y′, z′)-coordinate system reads

σ
′ = C′

ε
′ (1–48)

where the constitutive matrix has the form

C′ = E





A Sy′ −Sz′

Sy′ Iy′y′ −Iy′z′

−Sz′ −Iy′z′ Iz′z′



 . (1–49)

Obviously, as given by Eqs. (1–47) and (1–49), the cross-sectional areaA is invariant to a rotation
of the cross-section about thex-axis and a translation in they- andz-directions.

From Eqs. (1–44a), (1–44b) and (1–46) follows that

σ
′ = AT Cε = ATCAε

′ ⇒

C′ = AT CA = E





1 0 0
−zB 1 0

yB 0 1









A Sy −Sz

Sy Iyy −Iyz

−Sz −Iyz Izz









1 −zB yB

0 1 0
0 0 1



 ⇒

Elastic Beams in Three Dimensions



18 Chapter 1 – Beams in three dimensions

C′ = E





A Sy−zBA −(Sz−yBA)
Sy−zBA Iyy−2zBSy+z2

BA −Iyz + yBSy+zB(Sz−yBA)
−(Sz−yBA) −Iyz + yBSy+zB(Sz−yBA) Izz−2yBSz+y2

BA



 .

(1–50)

The idea is now to use the translational coordinate transformation to uncouple the axial defor-
mations from the bending deformations. This requires thatSy′ = Sz′ = 0. Upon comparison
of Eq. (1–49) and Eq. (1–50), this provides the following relations for the deformation of the
coordinates of the bending centre:

yB =
Sz

A
, zB =

Sy

A
. (1–51)

With yB andzB given by Eq. (1–51), the bending moments of inertia,Iy′y′ andIz′z′ , and the
centrifugal moment of inertia,Iy′z′ , in the new coordinate system can be expressed in terms of
the corresponding quantities in the old coordinate system as follows:

Iy′y′ = Iyy − 2zB(AzB) + z2
BA = Iyy − z2

BA, (1–52a)

Iz′z′ = Izz − 2yB(AyB) + y2
BA = Izz − y2

BA, (1–52b)

Iy′z′ = Iyz − yB(AzB) − zB(AyB) + yBzBA = Iyz − yBzBA. (1–52c)

The final results in Eq. (1–52) are known asKönig’s theorem.

x

y

z

yB

O

Figure 1–12 Single-symmetric cross-section.

If the cross-section is symmetric around a single line, and the y-axis is placed so that it
coincides with this line of symmetry, then the static momentSy vanishes,i.e.

Sy =

∫

A

zdA = 0 (1–53)

As a result of this, the bending centreB will always be located on the line of symmetry in a
single-symmetric cross-section, see Fig. 1–12. Obviously, if the cross-section is double symmet-
ric, then the position ofB is found at the intersection of the two lines of symmetry.
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1.4 Uncoupling of axial and bending deformations 19

Example 1.1 Determination of bending and centrifugal moments of inertia of non-symmetric
thin-walled cross-section

The position of the bending centre of the cross-section shown in Fig. A is determined along with the
bending moments of inertiaIy′y′ andIz′z′ and the centrifugal moment of inertiaIy′z′ .

x

y

z

t

t

2t

a

2a

2a
O

Figure A Thin-walled cross-section.

The(x, y, z)-coordinate system is placed as shown in Fig. A. Then, the following cross-sectional con-
stants are calculated:

A = 2a · 2t + 2a · t + a · t = 7at, (a)

Sy = 2a · 2t · a + 2a · t · t

2
+ a · t · a

2
=

1

2
(2t + 9a) + ta, (b)

Sz = 2a · 2t · t + 2a · t · (2t + a) + a · t ·
(

2t + 2a +
t

2

)

=
1

2
(21t + 8a)ta, (c)

Iyy =
1

3
· 2t · (2a)3 +

1

3
· 2a · t3 +

1

3
· t · a3 =

1

3

(

2t2 + 17a2
)

ta, (d)

Izz =
1

3
· 2a · 2a · (2t)3 +

1

12
(2a)3 · t + 2a · t · (2t + a)2 +

1

12
· a · t3 + a · t ·

(

2t + 2a +
t

2

)2

=
1

3

(

59t2 + 54ta + 20a2
)

ta, (e)

Iyz = 2a · 2t · t · a + 2a · t · (2t + a) · 1

2
+ a · t ·

(

2t + 2a +
t

2

)

· a

2
=

1

4

(

8t2 + 25ta + 4a2) ta. (f)

Here, use has been made of König’s theorem at the calculationof contributions toIyy, Izz andIyz from
the three rectangles forming the cross-section.

The coordinates of the bending centre follow from Eq. (1–51)and Eqs. (a) to (c). Thus,

yB =
Sz

A
=

3

2
t +

4

7
a, zB =

Sy

A
=

1

7
t +

9

14
a. (g)

(continued)
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x′

y′

z′B

3
2
t + 4

7
a

1
7
t + 9

14
a

Figure B Position of bending centre in the thin-walled cross-section.

Subsequently, the moments of inertia around the axes of the(x′, y′, z′)-coordinate system follow from
Eq. (1–52), Eq. (1–53) and Eqs. (d) to (f):

Iy′y′ =
1

3
(2t2 + 17a2)ta −

(

1

7
t +

9

14
a

)2

· 7ta =
1

84
(44t2 − 108ta + 233a2)ta, (h)

Iz′z′ =
1

3
(59t2 + 54ta + 20a2)ta −

(

3

2
t +

4

7
a

)2

· 7ta =
1

84
(329t2 + 504ta + 368a2)ta, (i)

Iy′z′ =
1

4
(8t2 + 25ta + 4a2)ta−

(

1

7
t +

9

14
a)

)(

3

2
t +

4

7
a

)

· 7ta =
1

14
(7t2 − 15ta − 22a2)ta. (j)

Now, for a thin-walled cross-section the thickness of the flanges and the web is much smaller than the
widths of the flanges and the height of the web. In the present case this means thatt ≪ a. With this in
mind, Eqs. (g) to (j) reduce to

yB ≃ 4

7
a, zB ≃ 9

14
a (k)

and

Iy′y′ ≃ 233

84
ta3, Iz′z′ ≃ 92

21
ta3, Iy′z′ ≃ −11

7
ta3. (l)

It is noted that the error onIz′z′ estimated by Eq. (l) increases rapidly with increasing values of t/a.
Thus, fort/a = 0.1, the error is about13%. The errors related to the estimated values ofIy′y′ andIy′z′

are somewhat smaller,i.e.about5% and7%, respectively. �

From now on, the origin of the(x, y, z)-coordinate system is placed at the bending centre.
Then, the constitutive matrix given by Eq. (1–47) takes the form

C = E





A 0 0
0 Iyy −Iyz

0 −Iyz Izz



 . (1–54)
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1.4 Uncoupling of axial and bending deformations 21

As a result of this, an axial forceN no longer induces deformations in they- andz-directions,
and the bending momentsMy andMz do not induce axial displacements. However, the bending
momentMy will still induce displacements in they-direction in addition to the expected dis-
placements in thez-direction. Similarly, the bending momentMz induces displacements in both
they- andz-directions.

1.4.2 Determination of the principal axes

In order to uncouple the bending deformations, so thatMy will only induce deformations in the
z-direction, andMz only deformations in they-direction, a new(x′, y′, z′)-coordinate system is
introduced with origin inB and rotated the angleϕ around thex-axis as shown in Fig. 1–13.

κy, My

κz , Mz

κ′

y, M ′

y

κ′

z , M ′

z

ϕ

N = N ′

y

z

y′

z′

B

Figure 1–13 Rotation of coordinate system.

Let {N, My, Mz} and{N ′, M ′

y, M
′

z} denote the components of the generalised stresses in
the(x, y, z)-coordinate system and the(x′, y′, z′)-coordinate system, respectively. The two sets
of generalised stresses are related as

σ = Bσ
′, (1–55a)

where

σ
′ =





N ′

M ′

y

M ′

z



 , σ =





N
My

Mz



 , B =





1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ



 . (1–55b)

Likewise, the components of the generalised strains in the two coordinate systems are denoted
as{ε′, κ′

y, κ′

z} and{ε, κy, κz}, respectively. These are related as

ε = Bε
′, (1–56a)
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where

ε
′ =





ε′

κ′

y

κ′

z



 , ε =





ε
κy

κz



 , B =





1 0 0
0 cosϕ − sin ϕ
0 sin ϕ cosϕ



 . (1–56b)

The constitutive relation in the(x′, y′, z′)-coordinate system reads

σ
′ = C′

ε
′, C′ = E





A 0 0
0 Iy′y′ −Iy′z′

0 −Iy′z′ Iz′z′



 . (1–57)

The corresponding constitutive relation in the(x, y, z)-coordinate system is given by Eq. (1–46)
with C given by Eq. (1–54). Use of Eqs. (1–55a) and (1–56a) in Eq. (1–46) provides

Bσ
′ = Cε = CBε

′ ⇒ σ
′ = BTCBε

′, (1–58)

where it has been utilised thatB−1 = BT . Comparison of Eq. (1–57) and Eq. (1–58) leads the
following relation between the constitutive matrices

C′ = BT CB

= E





1 0 0
0 cosϕ sin ϕ
0 − sinϕ cosϕ









A 0 0
0 Iyy −Iyz

0 −Iyz Izz









1 0 0
0 cosϕ − sin ϕ
0 sin ϕ cosϕ





= E





A 0 0
0 C′

22 C′

23

0 C′

32 C′

33



 . (1–59a)

where

C′

22 = cos2 ϕIyy − 2 cosϕ sin ϕIyz + sin2 ϕIzz , (1–59b)

C′

23 = C′

32 = − sinϕ cos ϕ(Iyy − Izz) − (cos2 ϕ − sin2 ϕ)Iyz , (1–59c)

C′

33 = cos2 ϕIzz + 2 cosϕ sin ϕIyz + sin2 ϕIzz . (1–59d)

From Eq. (1–57) and Eq. (1–59) follows that

Iy′y′ =
1

2
(Iyy + Izz) +

1

2
(Iyy − Izz) cos(2ϕ) − Iyz sin(2ϕ), (1–60a)

Iy′z′ = −
1

2
sin(2ϕ)(Iyy − Izz) − cos(2ϕ)Iyz , (1–60b)

Iz′z′ =
1

2
(Iyy + Izz) −

1

2
(Iyy − Izz) cos(2ϕ) + Iyz sin(2ϕ), (1–60c)

where use has been made of the relations

sin(2ϕ) = 2 sin ϕ cosϕ, cos(2ϕ) = cos2 ϕ − sin2 ϕ,

cos2 ϕ =
1

2
(1 + cos 2ϕ), sin2 ϕ =

1

2
(1 − cos2 ϕ).
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Uncoupling of bending deformations in the(x′, y′, z′)-coordinate system requires thatIy′z′ = 0.
This provides the following relation for the determinationof the rotation angleϕ:

−
1

2
sin(2ϕ)(Iyy − Izz) − cos(2ϕ)Iyz = 0 ⇒







tan(2ϕ) =
2Iyz

Izz−Iyy
for Iyy 6= Izz ,

cos(2ϕ) = 0 for Iyy = Izz .

(1–61)

Note thatcos(2ϕ) = 0 implies thatsin(2ϕ) = ±1. The sign ofsin(2ϕ) is chosen as follows:

sin(2ϕ) = 1 ⇒ ϕ = 1
4π for Iyz < 0

sin(2ϕ) = −1 ⇒ ϕ = 3
4π for Iyz > 0







. (1–62)

Then, Eq. (1–60) provides the following solutions forIy′y′ andIz′z′ :

Iy′y′ =
1

2
(Iyy + Izz)+ | Iyz |, Iz′z′ =

1

2
(Iyy + Izz)− | Iyz | . (1–63)

ForIyy 6= Izz the solution fortan(2ϕ) is fulfilled for the following two alternative solutions
for sin(2ϕ) andcos(2ϕ):

sin(2ϕ) = −
2Iyz

J
, cos(2ϕ) =

Iyy − Izz

J
, (1–64a)

sin(2ϕ) =
2Iyz

J
, cos(2ϕ) = −

Iyy − Izz

J
, (1–64b)

where

J =
√

(Iyy − Izz)2 + 4I2
yz. (1–65)

The sign definition in Eq. (1–64a) is chosen. This implies that

2ϕ ∈ [0, π] for Iyz < 0 and 2ϕ ∈ [π, 2π] for Iyz > 0. (1–66)

Insertion of the solution forsin(2ϕ) and cos(2ϕ) into Eq. (1–60) provides the following
results forIy′y′ andIz′z′ :

Iy′y′ =
1

2
(Iyy + Izz) +

1

2

(Iyy − Izz)
2 + 4I2

yz

J
, (1–67a)

Iz′z′ =
1

2
(Iyy + Izz) −

1

2

(Iyy − Izz)
2 + 4I2

yz

J
, (1–67b)

or, by insertion ofJ , cf. Eq. (1–65),

Iy′y′ =
1

2
(Iyy + Izz) +

1

2

√

(Iyy − Izz)2 + 4I2
yz, (1–68a)

Iz′z′ =
1

2
(Iyy + Izz) −

1

2

√

(Iyy − Izz)2 + 4I2
yz. (1–68b)
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(a) (b)

ϕ

ϕ

y y

z z

y′

y′z′

z′

x = x′

x = x′

B
B

Figure 1–14 Position of principal axes: (a)Iyz < 0 and (b)Iyz > 0.

The coordinate axesy′ andz′ are known as theprincipal axesof the cross-section, whereasIy′y′

andIz′z′ are called theprincipal moments of inertia. It follows from Eqs. (1–63) and (1–67) that
the choices of signs forsin(2ϕ) implies thatIy′y′ becomes the larger of the principal moments
of inertia andIz′z′ is the smaller principal moment of inertia. It is emphasisedthat this choice
is performed merely to have a unique determination ofϕ. Three other choices ofϕ are possible
obtained by additional rotations of the magnitudesπ

2 , π and 3
2π relative to the indicated.

If the cross-section has a symmetry line, and they-axis is placed along this line, thenIyz = 0.
Hence, a symmetry line is always a principal axis. Since the principal axes are orthogonal, the
z-axis is also a principal axis—even if the cross-section is not symmetric around the axis.

Example 1.2 Determination of principal axes coordinate system

The cross-section analysed in Example 1.1 is reconsidered.The thin-wall approximation is used, so the
moments of inertia are given by Eq. (l) in Example 1.1 and repeated here (without the primes):

Iyy ≃ 233

84
ta3 ≈ 2.7738 · ta3, Izz ≃ 92

21
ta3 ≈ 4.3810 · ta3, Iyz ≃ −11

7
ta3 ≈ −1.5714 · ta3.(a)

The position of the bending centre relatively to the top-left corner of the cross-section is provided in
Fig. A. From Eq. (a) and Eq. (1–65) follows that

J =

√

(

233

84
ta3 − 92

21
ta3

)2

+ 4

(

−11

7
ta3

)2

= ta3 ·
√

9769

28
, (b)

which by insertion into Eq. (1–64) provides:

sin(2ϕ) = −2 ·
(

− 11
7

ta3
)

· 28
ta3 ·

√
9769

=
88√
9769

≈ 0.8903, (c)

cos(2ϕ) =

(

233
84

ta3 − 92
21

ta3
)

· 28
ta3 ·

√
9769

= − 3780

84 ·
√

9769
≈ −0.4553. (d)

(continued)
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y

z

ϕ

y′

z′

x = x′

t

t

2t

a

2a

2a

B

yB ≃
4
7
a

zB ≃
9
14

a

Figure A Position of principal axes coordinated system for the thin-walled cross-section.

From Eqs. (c) and (d) it is found thatϕ = 1.0217 radians corresponding toϕ = 58.5418◦ . Hence,
ϕ ∈ [0, π

2
] in agreement withIyz = − 11

7
ta3 < 0.

Finally, the moments of inertia in the principal axes coordinate system follow from Eq. (1–67),i.e.

Iy′y′

Iz′z′







=





1

2

(

233

84
+

92

21

)

± 1

2

√

(

233

84
− 92

21

)2

+ 4

(

11

7

)2


 ta3 =







5.3423 ta3,

1.8124 ta3.
(e)

Clearly, Iy′y′ is greater than any ofIyy or Izz, whereasIy′y′ is smaller than the bending moments of
inertia defined with respect to the originaly- andz-axes. �

1.4.3 Equations of equilibrium in principal axes coordinat es

From now on it will be assumed that the(x, y, z)-coordinate system forms a principal axes coor-
dinate system with origin at the bending centre. In this case, the system of differential equations
(1–28) for a Timoshenko beam uncouples into three differential subsystems. Thus, the axial
deformation is governed by the equation

d

dx

(

EA
dwx

dx

)

+ qx = 0, (1–69)

whereas bending deformation in they-direction is defined by the coupled equations

d

dx

(

EIz
dθz

dx

)

+ GAz

(

dwy

dx
− θz

)

+ mz = 0, (1–70a)

d

dx

(

GAy

(

dwy

dx
− θz

))

+ qy = 0, (1–70b)

where the double indexyy on the bending moment of inertia has been replaces by a singleindex
y in order to indicate that the principal-axes coordinates are utilised.
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Similarly, the flexural deformations in thez-directions are determined by

d

dx

(

EIy
dθy

dx

)

− GAz

(

dwz

dx
+ θy

)

+ my = 0, (1–71a)

d

dx

(

GAz

(

dwz

dx
+ θy

))

+ qz = 0, (1–71b)

where again the double index on the bending moment of inertiahas been replaced by a single
index. As seen from Eqs. (1–70) and (1–71),{wy, θz} and{wz, θy} are still determined by
pairwise coupled ordinary differential equations of the second order.

For a Bernoulli-Euler beam, the system of ordinary differential equations (1–33) uncouples
completely into the following differential equations for the determination ofwx, wy andwz :

d

dx

(

EA
dwx

dx

)

+ qx = 0, (1–72a)

d2

dx2

(

EIz
d2wy

dx2

)

− qy +
dmz

dx
= 0, (1–72b)

d2

dx2

(

EIy
d2wz

dx2

)

− qz −
dmy

dx
= 0. (1–72c)

Example 1.3 Plane, fixed Timoshenko beam with constant load per unit length

Figure A shows a plane Timoshenko beam of the lengthl with constant bending stiffnessEIz and shear
stiffnessGAy. The beam is fixed at both end-sections and is loaded with a constant loadqy and a constant
moment loadmz . The displacementwy(x), the rotationθz(x), the shear forceQy(x) and the bending
moment are to be determined.

x

y

z

l

mzδqy

EIzz, GAy

Figure A Fixed beam with constant load per unit length.

The differential equations for determination ofwy(x) andθz(x) follow from Eq. (1–70). Thus,

EIz
d2θz

dx2
+ GAy

(

dwy

dx
− θz

)

+ mz = 0,
d

dx

(

GAy

(

dwy

dx
− θz

))

+ qy = 0. (a)

According to Eq. (1–35), the boundary conditions are:

wy(0) = wy(l) = 0, θz(0) = θz(l) = 0. (b)

(continued)
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Integration of the second equation in Eq. (a) provides:

Qy = GAy

(

dwy

dx
− θz

)

= −qyx + c1 (c)

Then, the following solution is obtained forθz(x) from the first equation in Eq. (a):

EIz
d2θz

dx2
= qyx − (c1 + mz) ⇒ EIzθz(x) =

1

6
qyx3 − 1

2
(c1 + mz)x

2 + c2x + c3. (d)

Further, the boundary conditionsθz(0) = θz(l) = 0 provide

c3 = 0, c2 = −1

6
qyl2 +

1

2
(c1 + mz)l. (e)

Hence, the following reduced form is obtained forθz(x):

θz(x) =
1

6EIz

(

qy(x3 − xl2) − 3(c1 + mz)(x
2 − xl)

)

. (f)

Next, Eq. (f) is inserted into Eq. (c) which is subsequently integrated with respect tox, leading to the
following solution forwy(x):

GAy
dwy

dx
= −qyx + c1 +

GAy

6EIz

(

qy(x3 − xl2) − 3(c1 + mz)x
2 − xl)

)

⇒

GAywy(x) = −1

2
qyx2 + c1x + c4 +

GAy

6EIz

(

1

4
qy(x4 − 2x2l2) − 1

2
(c1 + mz)(2x3 − 3x2l)

)

. (g)

The boundary conditionswy(0) = wy(l) = 0 provide the integration constants

c4 = 0, c1 =
1

2
qyl − 1

Φy + 1
mz, (h)

where

Φy = 12
EIz

GAyl2
(i)

Then, Eq. (a) and Eq. (f) provide the following solutions:

wy(x) =
qy

2GAy
(l − x)x +

qy

24EIz
(l − x)2x2 − mz

GAy

x

Φy + 1
− mz

12EIz

Φy

Φy + 1
(2x3 − 3x2l) ⇒

wy(x) =
qy

24EIz

(

(l − x)2x2 + Φyl2(l − x)x
)

− mz

12EIz

Φy

Φy + 1
(2x3 − 3x2l + xl2), (j)

θz(x) =
qy

12EIz
(2x3 − 3x2l + xl2) +

mz

2EIz

Φy

Φy + 1
(l − x)x. (k)

The non-dimensional parameterΦy is a measure of the influence of the shear deformations. For a
rectangular cross-section with the heighth we haveIz = 1

12
h2A andAy = 5

6
A. ThenΦy becomes

Φy =
72

5
· h2

l2
E

G
. (l)

Hence, shear deformations are primarily of importance for short and high beams. On the other hand, for
long beams with a small height of the cross-section, shear deformations are of little importance,i.e.only
the bending deformation is significant. (continued)
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For Bernoulli-Euler beams we haveγxy = 0, corresponding toGAy = ∞, cf. Eqs. (1–16) and (1–27).
Then,Φy = 0 and Eqs. (j) and (k) reduce to

wy(x) =
qy

24EIz
(l − x)2x2, (m)

θz(x) =
qy

12EIz
(2x3 − 3x3l + xl). (n)

It is remarkable that the distributed moment loadmz does not induce any displacements or rotations in
the considered beam with Bernoulli-Euler kinematics.

The shear forceQy(x) and bending momentMz(x) follow from Eq. (c), Eq. (h) and Eq. (k), respec-
tively, i.e.

Qy(x) = −qyx + c1 =
1

2
qy(l − 2x) − 1

Φy + 1
mz, (o)

Mz(x) = EIz
dθz

dx
=

qy

12
(6x2 − 6xl + l2) +

mz

2

Φy

Φy + 1
(l − 2x). (p)

For a Bernoulli-Euler beam these results reduce to

Qy(x) =
1

2
qy(l − 2x) − mz, (q)

Mz(x) =
qy

12
(6x2 − 6xl + l2). (r)

The constant moment loadmz only induces a constant shear force of magnitude−mz , whereasMz(x)
is not affected by this load. Especially, forx = 0 andx = l, Eq. (o) and Eq. (p) provide

Qy(0) =
1

2
qyl − mz, My(0) =

1

12
qyl +

1

2

Φy

Φy + 1
mzl, (s)

Qy( l) = −1

2
qyl − mz, My( l) =

1

12
qyl2 − 1

2

Φy

Φy + 1
mzl. (t)

The displacement at the midpointx = l/2 follows from Eq. (k):

wy (l/2) =
qyl4

384EIz
(1 + 4Φy). (u)

The first and second terms within the parenthesis specify thecontributions from bending and shear, re-
spectively. Again the parameterΦy reveals itself as a measure of the relative contribution from shear
deformations. �

1.5 Normal stresses in beams

For at beam without warping, the normal stressσxx(x, y, z) in terms of the generalised strains
follows from Eqs. (1–17), (1–20) and (1–24):

σxx = E(ε − κzy + κyz). (1–73)

In the principal axes coordinate system, whereSy = Sz = Iyz = 0, the generalised strains
{ε, κy, κz} are related to the conjugated generalised stresses{N, My, Mz} as determined from
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Eqs. (1–45a), (1–45b), (1–46) and (1–47) forSy = Sz = Iyz = 0, i.e.

ε =
N

EA
, κy =

My

EIy
, κz =

Mz

EIz
. (1–74)

Insertion of Eq. (1–74) into Eqs. (1–19) and (1–24) providesthe result for the axial stress in
terms of the generalised stresses,

σxx =
N

A
−

Mz

Iz
y +

My

Iy
z. (1–75)

Equation (1–75) is due to Navier, and is therefore referred to asNavier’s formula. It should be
noticed that Eq. (1–75) presumes that the stresses are formulated in a principal axes coordinate
system, soIy andIz indicate the principal moments of inertia. The relation is valid for both
Timoshenko and Bernoulli-Euler beams. This is so because only the relation (1–15), but not
the relation (1–18) has been utilised. Hence, Eq. (1–75) is based on the assumption that plane
cross-sections remain plane, but not that they remain orthogonal to the beam axis.

The so-calledzero linespecifies the line in the(y, z)-plane on whichσx = 0. The analytical
expression for the zero line becomes

N

A
−

Mz

Iz
y +

My

Iy
z = 0. (1–76)

It is finally noted that warping introduces displacements inthe axial direction in addition to
those provided by bending. However, if the torsion is homogeneous, these displacements will
not introduce any normal strains and therefore no normal stresses. Hence, Navier’s formula is
also valid in the case of St. Venant torsion, but in the case ofVlasov torsion, or inhomogeneous
torsion, additional terms must be included in Eq. (1–75).

1.6 The principle of virtual forces

In this section theprinciple of virtual forcesis derived for a plane Timoshenko beam of the length
l. The deformation of the beam is taking place in the(x, y)-plane. In the referential state, the
left end-section is placed at the origin of the coordinate system and thex-axis is placed along the
bending centres of the cross-sections, see Fig. 1–15.

The principle of virtual forces is the dual to theprinciple of virtual displacements. In the
principle of virtual displacements the actual sectional forces and sectional moments are assumed
to be in equilibrium with the loads and the reaction forces applied at the end sections. The virtual
displacements and rotations are considered as arbitrary increments to the actual displacements
and they only need to fulfil homogeneous kinematic boundary conditions, so that the combined
field made up by the actual and the virtual fields always fulfilsthe actual non-homogeneous
boundary conditions as given by Eq. (1–35). Further, the generalised virtual strains defining the
internal virtual work must be derived from the virtual displacement and rotation fields.

In contrast, the principle of virtual forces presumes that the displacements and rotations of the
beam are fulfilling the kinematic boundary conditions, and that the generalised internal strains
are compatible to these fields. The actual loads on the beam are superimposed with the virtual
incremental loads per unit lengthδqx andδqy, the virtual moment load per unit lengthδmz ,
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x

y

z

l

δqx δqy

δmz

δMz,1

δMz,2

δQy,1

δN1

δN2

δMz
δQy

δN

δQy,2

Figure 1–15 Virtual internal and external forces.

the virtual reaction forcesδNj andδQy,j along thex- andy-directions, and the virtual reaction
momentsδMz in thez-directions, wherej = 1 andj = 2 indicate the left and right end-sections,
respectively. Due to the load increments, the internal section forces and section moment achieve
incrementsδN , δQy and δMz, see Fig. 1–15. These variational fields are assumed to be in
equilibrium with the variational load fieldsδqx, δqy andδmz, and to comply with the variations
δNj , δQy,j andδMz,j of the reaction forces and reaction moments. In what follows, δN , δQy

andδMz will be referred to as the virtual internal forces, whereasδqx, δqy, δmz, δNj , δQy,j

andδMz,j are called the virtual external forces.
The starting point is taken in the kinematical conditions provided by Eqs. (1–12) and (1–17)

and rewritten in the form

dwx

dx
− ε = 0,

dwy

dx
− θz − γxz = 0,

dθz

dx
− κz = 0. (1–77)

The virtual internal forces are related to the virtual external loads per unit lengthδqx, δqy and
δmz via the following equations of equilibrium, cf. Eqs. (1–4a)and (1–4b):

d(δN)

dx
+ δqx = 0,

d(δQy)

dx
+ δqy = 0,

d(δMz)

dx
+ δQy + δmz = 0. (1–78)

The first equation in Eq. (1–78) is multiplied withδN(x), the second equation is multiplied
with δQy(x), and the third equation withδM(z). Next, the equations are integrated fromx = 0
to x = l, and the three resulting equations are added, leading to theidentity

∫ l

0

[

δN

(

dwx

dx
− ε

)

+ δQy

(

dwy

dx
− θz − γxy

)

+ δMz

(

dθz

dx
− κz

)]

dx = 0 (1–79)

Integration by parts is carried out on the first terms within the innermost parentheses, leading to

[

δNwx + δQywy + δMzQz

]l

0

−

∫ l

0

(

d(δN)

dx
wx +

d(δQy)

dx
wy +

d(δMz)

dx
θz − δQyθz

)

dx

=

∫ l

0

(

δNε + δQy · γxy + δMz · κz

)

dx. (1–80)
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Upon utilisation of Eq. (1–78), this is reduced to

[

δN · wx + δQy · wy + δMz · θz

]l

0
+

∫ l

0

(

δqx · wx + δqy · wy + δmz · θz

)

dx

=

∫ l

0

(

δN · ε + δQy · γxy + δMz · κz

)

dx. (1–81)

The generalised strains on the right-hand side of Eq. (1–81)are now expressed in mechanical
quantities by means of Eq. (1–74). Further,δN , δQy andδMz fulfil the following boundary
conditions atx = 0 andx = l, cf. Fig. 1–15,

δN(0) = −δN1, δQy(0) = −δQy,1, δMz(0) = −δMz,1, (1–82a)

δN( l) = δN2, δQy( l) = δQy,2, δMz( l) = δMz,2. (1–82b)

Equation (1–81) then obtains the following final form:

2
∑

j=1

(

δNj · wx,j + δQy,j · wy,j + δMz,j · θz,j

)

+

∫ l

0

(

δqx · wx + δqy · wy + δmz · θz

)

dx

=

∫ l

0

(

δN · N

EA
+

δQy · Qy

GAy
+

δMz · Mz

EIz

)

dx, (1–83)

wherewx,j , wy,j andθz,j denote the displacements in thex- andy-directions and the rotation
in thez-direction at the end-sections, respectively. Equation (1–83) represents the principle of
virtual forces. The left- and right-hand sides represent the external and internal virtual work,
respectively.

The use of Eq. (1–83) in determining the displacements and rotations of a Timoshenko beam
is demonstrated in Examples 1.4 and 1.5 below. Furthermore,the principle of virtual forces may
be used to derive a stiffness matrix for a Timoshenko beam element as shown later.

Example 1.4 End-displacement of cantilevered beam loaded with a force at the free end

Figure A shows a plane Timoshenko beam of the lengthl with constant axial stiffnessEA, shear stiffness
GAy and bending stiffnessEIz . The beam is fixed at the left end-section and free at the rightend-section,
where it is loaded with a concentrated forceQy,2 in they-direction. The displacementwy,2 at the free
end is searched.

The principle of virtual forces Eq. (1–83) is applied with the following external virtual loads:δqx =
δqy = δmz = 0, δN1 = δQy,1 = δMz,1 = δN2 = δMz,2 = 0 andδQy,2 = 1. FurtherN(x) = 0.
Then, Eq. (1–83) reduces to

1 · wy,2 =

∫ l

0

(

δQy · Qy

GAy
+

δMz · Mz

EIz

)

dx. (a)

(continued)
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1

xx

yy

zz

l

ll

Mz

Qy

δMz

δQy

Qy,2 · ℓ

Qy,2

Qy,2 δQy,2 = 1

EA, GAy, EIz

Figure A Fixed plane Timoshenko beam loaded with a concentrated force at the free end: Actual force and section
forces (left) and virtual force and section forces (right).

The variation of the bending momentMz(x) and the shear forceQy(x) from the actual loadQy,2 has
been shown in Fig. A on the left. The corresponding variational moment fieldδMz(x) and shear force
δQy(x) from δQy,2 = 1 are shown in Fig. A on the right. Insertion of these distributions in Eq. (b)
provides the solution

wy,2 =
Qy,2l

GAy
+

1

3

Qy,2l
3

EIz
=

1

12
(4 + Φy) · Qy,2l

3

EIz
, (b)

whereΦy is given by Eq. (i) in Example 1.3. The deformation contributions from shear and bending
are additive. This is a consequence of the additive nature ofthe flexibilities indicated by Eq. (1–83)
in contribution to the fact that the beam is statically determinate, which provides the fieldsMz(x) and
Qy(x) as well asδMz(x) andδQy(x) directly. �

Example 1.5 End-deformations of fixed beam loaded with a moment at the free end

The beam described in Example 1.4 is considered again. However, now the free end is loaded with a
concentrated momentMz,2. The displacementwy,2 and the rotationθz,2 of the end-section is to be
found.

At the determination ofwy,2 from Mz,2, the principle of virtual forces given by Eq. (1–83) is again
applied withδQy,2 = 1 and all other external variational loads equal to zero, leading to Eq. (a) in
Example 1.4. However,Mz(x) andQy(x) are now caused byMz,2, and are given as shown in Fig. A,
whereasδMz(x) andδQy(x) are as shown in Fig. A of Example 1.4. Then,wy,2 becomes

wy,2 =

∫ l

0

δMz · Mz

EIz
dx =

1

2

My,2l
2

EIz
. (a)

(continued)
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1

xx

yy

zz

ll

Mz δMz

EA, GAy, EIz

Mz,2

Mz,2

Qy = 0 δQy = 0

δMz,2 = 1

Figure A Fixed plane Timoshenko beam loaded with a moment at the free end: Actual moment and section forces
(left) and virtual moment and section forces (right).

At the determination ofθz,2 the principle of virtual forces Eq. (1–83) is applied with the following
external virtual loadsδqx = δqy = δmz = 0, δN1 = δQy,1 = δMz,1 = δN2 = δQy,2 = 0 and
δMz,2 = 1. Then, Eq. (1–83) reduces to

1 · θz,2 =

∫ l

0

(

δQy · Qy

GAy
+

δMz · Mz

EIz

)

dx. (b)

The variation ofQy(x) andMz(x) from My,2 has been shown in Fig. A on the left, and the variation of
δQy(x) andδMz(x) from δMz,2 = 1 is shown in Fig. A on the right. Thenθz,2 becomes

θz,2 =

∫ l

0

1 · Mz,2

EIz
dx =

Mz,2l

EIz
. (c)

In the present load case, the shear force is given asQy(x) = 0. Consequently it will not induce any
contributions in Eq. (a) and Eq. (c). �

1.7 Elastic beam elements

When frame structures consisting of multiple beams are to beanalysed, the establishment of
analytical solutions is not straightforward and instead a numerical solution must be carried out.
For this purpose, a discretization of the frame structure into a number of so-calledbeam ele-
mentsis necessary, eventually leading to afinite-element model. The aim of the present section
is not to provide a full introduction to the finite-element method for the analysis of frame struc-
tures,e.g.tower blocks with a steel frame as the load-carrying structure. However, a formula-
tion is given for a single beam element to be applied in such analyses. Both the Timoshenko
and Bernoulli-Euler beam theories are discussed in this context, and plane as well as three-
dimensional beams are touched upon.
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1.7.1 A plane Timoshenko beam element

Firstly, the stiffness matrix and element load vector is derived for a plane Timoshenko beam ele-
ment with constant axial stiffnessEA, shear stiffnessGAy and bending stiffnessEIz , cf. Fig. 1–
16. The stiffness relation is described in an(x, y)-coordinate system with origin at the left end-
section and thex-axis along the bending centres.

x

y

z

l

EA, GAy, EIz

Qy,1, wy,1

N1, wx,1

Mz,1, θz,1

Qy,2, wy,2

N2, wx,2

Mz,2, θz,2

1 2

Figure 1–16 Plane Timoshenko beam element with definition of degrees of freedom and nodal reaction forces.

At the end-nodes, nodal reaction forcesNj andQy,j are acting along thex- andy-directions,
respectively, and reaction momentsMz,j are applied around thez-axis. Here,j = 1 andj = 2
stand for the left-end and right-end nodes of the beam element, respectively, and the reaction
forces and moments are in equilibrium with the remaining external loads on the element for
arbitrary deformations of the beam.

The element has 6 degrees of freedom defining the displacements and rotations of the end-
sections, cf. Fig. 1–16. These are organised in the column vector

we =

[

we1

we2

]

=
[

wx,1 wy,1 θz,1 wx,2 wy,2 θz,2

]T
(1–84)

The sub-vectorwej defines the degrees of freedom related to element nodej.
Similarly, the reaction forcesNj, Qy,j andMz,j, j = 1, 2, at the end-sections, work conju-

gated towx,j , wy,j andθz,j, are stored in the column vector

re =

[

re1

re2

]

=
[

N1 Qy,1 Mz,1 N2 Qy,2 Mz,2

]T
(1–85)

x

y

z

mz
px

py

Qy,1

N1

Mz,1

Qy,2

N2

Mz,2

Figure 1–17 External loads and reaction forces from external loads on a plane beam element.

The equilibrium of the beam element relating the nodal reaction forces to the degrees of
freedom of the element may be derived by the principle of virtual displacements as demonstrated
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in a subsequent paper. The resulting equilibrium equationson matrix form may be written on the
form

re = Kewe + fe. (1–86)

The vectorfe in Eq. (1–86) represents the nodal reaction forces from the external element loads
whenwe = 0, i.e. when the beam is fixed at both ends as shown in Fig. 1–17. We shall merely
consider constant element loadsqx andqy per unit length in thex- andy-directions, and a con-
stant moment load per unit lengthmz in thez-direction, see Fig. 1–17. The reaction forces and
reaction moments follow from Eqs. (s) and (t) in Example 1.3:

fe =



















− 1
2qxl

− 1
2qyl + mz

− 1
12qyl2 − 1

2
Φy

Φy+1mzl

− 1
2qxl

− 1
2qyl − mz

1
12qyl2 − 1

2
Φy

Φy+1mzl



















. (1–87)

The matrixKe in Eq. (1–86) denotes the stiffness matrix in the local(x, y, z)-coordinate system.
Let wi denote theith component ofwe. Then, theith column inKe represents the nodal reaction
forces forfe = 0, and withwi = 1 andwj = 0, j 6= i. These forces are obtained following
the derivations in Example 1.3 from Eq. (a) to Eq. (t) withqy = mz = 0 and with the boundary
condition in Eq. (b) replaced by the indicated conditions. Because of the symmetry of the prob-
lem, only two such analyses need to be performed. Still, thisis a rather tedious approach. Partly
because of this, and partly in order to demonstrate an alternative approach, the stiffness matrix
will be derived based on the principle of virtual forces.

x x

yy

wx

wy
θz

Undeformed stateUndeformed state

(a) (b)

Figure 1–18 Rigid-body modes of a plane beam element: (a) Translation and (b) rotation.

The beam element has 6 degrees of freedom, by which a total of 6linear independent modes
of deformation may be defined. These consist of 3 linear independent rigid body modes and
3 linear independent elastic modes. The rigid modes may be chosen as a translation in the
x-direction, a translation in they-direction and a rotation around thez-direction as shown in
Fig. 1–18. Any rigid body motion of the beam element may be obtained as a linear combination
of these component modes of deformation. Obviously, the rigid body motions do not introduce
stresses in the beam. Hence, the axial forceN , the shear forceQy and the bending momentMz

are all zero during such motions.
Since, axial elongations are uncoupled from bending deformations, the elastic elongation

mode is uniquely defined as shown in Fig. 1–19a. The two bending deformation modes may be
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x

x

x

y

yy

Mz

Mz

(a)

(b) (c)

Qy = 0

N

N0

N0

N0

u0

2
u0

2

θsθs θa

θa

Ms Ms

Ms

Ma

Ma

Ma

Ma

2Ma

l

2Ma

l

2Ma

l
Qy

Figure 1–19 Elastic modes and related section forces in a plane beam element: (a) Axial elongation; (b) symmetric
bending and (c) antisymmetric bending.

chosen in arbitrarily many ways. Typically, these are chosen by prescribing an angle of rotation
at the other end-section. Following an idea by Krenk (2001),a more convenient formulation may
be obtained by choice of two bending modes symmetric and anti-symmetric around the mid-point
of the beam element as shown in Figs. 1–19b and 1–19c. It should be noticed that these modes
also apply if the material properties of the beam are not symmetrical around the mid-point.

The axial elongation and conjugated axial force related to the axial elongation mode are de-
notedu0 andN0, respectively. The symmetric and anti-symmetric bending modes are described
by the end-section rotationsθs andθa defined in Figs. 1–19b and 1–19c, respectively. The con-
jugated moments are denotedMs andMa, respectively. The related distributions of the shear
forceQy(x) and the bending momentMz(x) are shown in Figs. 1–19b and 1–19c.

The shear force is equal toQy = 0 in symmetric bending, because the bending moment is
constant. Then, no shear deformations are related to this mode. In contrast, a constant shear
force appears in the anti-symmetric bending mode. Hence, the deformations occurring in this
mode are affected by bending as well as shear contributions.

At first the constitutive relations between the deformationmeasures and the conjugated gen-
eralised strains for the indicated elastic modes are found by means of the principle of virtual
forces Eq. (1–83). In all cases, the beam element is unloaded, soδqx = δqy = δmz = 0. For the
axial elongation modeN = N0, Qy = Mz = 0, andδN = 1, δN1 = −1, δN2 = 1. Further,
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wx,1 = − 1
2u0, wx,2 = 1

2u0, wy,j = θz,j = 0. Then, Eq. (1–83) reduces to

(−1) · (−
1

2
u0) + 1 ·

1

2
u0 =

∫ l

0

1 · N0

EA
dx ⇒ u0 = N0

∫ l

0

dx

EA
=

l

EA
N0. (1–88)

The last statement holds for a beam element with constant axial stiffnessEA. If EA varies, the
integral in the middlemost statement must be evaluated analytically or numerically.

For the symmetric bending modeN = Qz = 0, Mz = −Ms, δMz = −1, δMz,1 = 1, and
δMz,2 = −1. Further,θz,1 = θs, θz,2 = −θs andwx,j = wy,j = 0. Then, Eq. (1–83) provides

1 · θs + (−1) · (−θs) =

∫ l

0

(−1)(−Ms)

EIz
dx ⇒ 2θs = Ms ·

∫ l

0

dx

EIz
=

l

EIz
Ms. (1–89)

Again, the last statement only applies for a homogeneous beam, whereas the middlemost state-
ment applies for any variation of the bending stiffnessEIz along the beam.

For the anti-symmetric bending modeN = 0, Qy = 2Ma

l , Mz(x) = (−1 + 2x/l)Ma, and
δQy = 2δMz(x)/l = (−1 + 2x/l). Further,θz,1 = θa, θz,2 = θa, wx,j = wy,j = 0. Then,
Eq. (1–83) provides

1 · θa + 1 · θa =

∫ l

0

(

2
l ·

2Ma

l

GAy
+

(−1 + 2x
l )(−1 + 2x

l )Ma

EIz

)

dx ⇒

2θa = Ma

(

4

l2

∫ l

0

dx

GAy
+

∫ l

0

(−1 + 2x
l )2

EIz
dx

)

⇒

2θa = Ma

(

4l
1

GAyl2
+

1

3

l

EIy

)

=
1

3

l

EIy
(1 + Φy)Ma, Φy = 12

EIz

GAyl2
. (1–90)

As discussed in Example 1.3, the non-dimensional parameterΦy defines the contribution of shear
flexibility relatively to the bending flexibility.

The flexibility relations provided by Eqs. (1–88), (1–89) and (1–90) may be written in the
following equivalent stiffness matrix formulation:

r0 = K0w0, (1–91)

where

r0 =





N0

Ms

Ma



 , w0 =





u0

2θs

2θa



 , K0 =





EA
l 0 0
0 EIz

l 0

0 0 3
1+Φy

EIz

l



 . (1–92)

The nodal reaction forcesre andr0 in Eq. (1–85) and Eq. (1–92) are related via the transfor-
mation

re = Sr0 = SK0w0, (1–93)

where

S =

















−1 0 0
0 0 2/l
0 1 1
1 0 0
0 0 −2/l
0 −1 1

















. (1–94)
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Similarly, the elastic deformation measures stored inw0 can be expressed by the degrees of
freedom of the element stored inwe as follows (see Fig. 1–20):

u0 = wx,2 − wx,1, (1–95)

θz,1 = θa + θs + 1
l (wy,2 − wy,1)

θz,2 = θa − θs + 1
l (wy,2 − wy,1)







⇒







2θa = θz,1 + θz,2 −
2
l (wy,2 − wy,1)

2θs = θz,1 − θz,2.
(1–96)

wy,1

wy,2

θa + θs

θa − θs

θz,1

θz,2

Figure 1–20 Connection between elastic deformation measures and element degrees of freedom.

Equations (1–95) and (1–96) may be rewritten in the common matrix form

w0 = ST we, (1–97)

whereS is given by Eq. (1–94). Insertion of Eq. (1–97) into Eq. (1–93) provides upon compari-
son with Eq. (1–86):

re = SK0S
T we ⇒ Ke = SK0S

T . (1–98)

Insertion ofK0 andS as given by Eq. (1–92) and Eq. (1–94) provides the following explicit
solution forKe:

Ke =
E

l3



















Al2 0 0 −Al2 0 0
0 12

1+Φy
Iz

6
1+Φy

Izl 0 − 12
1+Φy

Iz
6

1+Φy
Izl

0 6
1+Φy

Izl
4+Φy

1+Φy
Izl

2 0 − 6
1+Φy

Izl
2−Φy

1+Φy
Izl

2

−Al2 0 0 Al2 0 0
0 − 12

1+Φy
Iz − 6

1+Φy
Izl 0 12

1+Φy
Iz − 6

1+Φy
Izl

0 6
1+Φy

Izl
2−Φy

1+Φy
Izl

2 0 − 6
1+Φy

Izl
4+Φy

1+Φy
Izl

2



















. (1–99)

The corresponding result for a plane Bernoulli-Euler beam element is obtained simply by
settingΦy = 0. The equivalent element relations for a three-dimensionalbeam formulated in a
(x, y, x) principal axes coordinate system are given in the next section.
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Example 1.6 Deformations of a plane Timoshenko beam structure

Figure A shows a plane beam structureABC consisting of two Timoshenko beam elementsAB and
BC of the lengthsl andl/2, respectively. The loads on the structure and the resultingdisplacements are
described in the indicated(x, y)-coordinate system. The shear stiffnessGAy and the bending stiffness
EIz are constant and the same in both beam elements. The structure is fixed at pointA, free at pointC,
and simply supported at pointB. Both beam elements are loaded with a constant load per unit lengthqy .
Additionally, beamBC is loaded with a concentrated loadPy = qyl at the free endC.

1 2

x

y

z

l

Py = qylqy

l/2

A B C

GAy , EIz

Figure A Plane Timoshenko beam structure consisting of two beam elements.

We want to determine the displacement of pointC in the y-direction, and the reaction forces and
moments at the support pointsA andB. The calculations are performed with the shear stiffness given as

GAy = 120
EIz

l2
. (a)

We shall refer to the beam elementsAB andBC with the indexe = 1 ande = 2, respectively. With
reference to Eq. (i) in Example 1.3, the shear flexibility parameters for the two beam elements become:

Φy1 =
12EIz

GAyl2
= 0.1, Φy2 =

12EIz

GAy(l/2)2
= 0.4. (b)

1 2

θ1, M1 θ2θ2 θ3

w1 w2w2 w3

Q1 Q2

Figure B Global degrees of freedom and reaction forces in the plane Timoshenko beam structure.

Since, the axial deformations are disregarded, each element has 4 degrees of freedom out of which two
are common, namely the displacement and rotation at point B.The related global degrees of freedom
have been defined in Fig. B. The element stiffness matrices follow from Eq. (1–99) and Eq. (b):

K1 =
EIz

1.1l3









12 6l −12 6l
6l 4.1l2 −6l 1.9l2

−12 −6l 12 −6l
−6l 1.9l2 −6l 4.1l2









, K2 =
8EIz

1.4l3









12 3l −12 3l
3l 1.1l2 −3l 0.4l2

−12 −3l 12 −3l
3l 0.4l2 −3l 1.1l2









. (c)

(continued)
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The corresponding element loads become, cf. Eq. (1–87):

f1 =









− 1
2
qyl

− 1
12

qyl2

− 1
2
qyl

1
12

qyl2









= − 1

12
qyl









6
l
6

−l









, f2 =









− 1
2
qy · l

2

− 1
12

qy( l
2
)2

− 1
2
qy

l
2

+ Py
1
12

qy( l
2
)2









= − 1

48
qyl









12
l

60
−l









. (d)

The global equilibrium equation, made up of contributions from both elements, has the structure

r = Kw + f , (e)

where

r =

















p q

| r1 |
| p | q

x | y |
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x y
















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














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0

















, w =














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
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, (f)

K =




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
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







. (g)

The details in the derivation of the matrix equation Eq. (e),including the formation of the column vectors
r and f and the global stiffness matrixK by adding contribution from element components, will be
explained in a later chapter.

The displacement degrees of freedomw1 andw2 at the nodesA andC are both equal to zero. Similarly,
the rotationθ1 at the fixed support atA is zero. When these values are introduced inw0, Eq. (e) provides
the values of the reaction componentsQ1, M1 andQ2 if the remaining unconstrained degrees of freedom
θ2, w3 and θ3 are inserted. These are determined from the corresponding equations in Eq. (e) using
w1 = θ1 = w2 = 0, leading to

EI

l3





( 4.1
1.1

+ 8.8
1.4

)l2 − 24
1.4

l 3.2
1.4

l2

− 24
1.4

l 96
1.4

− 24
1.4

l
3.2
1.4

l2 − 24
1.4

l 8.8
1.4

l2









θ2

w3

θ3



 − 1

48
qyl





−3l
60
−l



 =





0
0
0



 ⇒





θ2l
w3

θ3l



 =
qyl4

EIz





0.1453
0.1274
0.2912



 . (h)

Insertion of Eq. (h) along withw1 = θ1 = w2 = 0 into the remaining equation (e) provides the
following solution for the reaction componentsQ1, M1 andQ2: (continued)
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



Q1
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Q2


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EIz

l3





6
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l 0 0
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0.1274
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48
qyl





24
4l
36



 ⇒





Q1l
M1

O2l



 = qyl2





0.2927
0.1677
−2.7927



 . (i)

In case of Bernoulli-Euler kinematics, corresponding toΦy1 = Φy2 = 0, the corresponding solutions
become:




θ1l
w3

θ2l



 =
qyl4

EI





0.1354
0.1172
0.2812



 (j)





Q1l
M1

Q2l



 = qyl2





0.3125
0.1875
−2.8125



 (k)

Comparison of Eqs. (h) and (j) reveals that the displacementw3 as well as the rotationsθ1 andθ3

are increased by the shear flexibility. This is so because bending and shear deformations in general are
coupled for statical indeterminate structures. At the sametime, a comparison of Eqs. (i) and (k) shows
that Bernoulli-Euler beam kinematics lead to higher stresses than Timoshenko beam theory, which is due
to the fact that the shear stiffness in the Bernoulli-Euler beam is infinite. �

1.7.2 A three-dimensional Timoshenko beam element

The formulation of the beam-element stiffness matrix is nowextended to three dimensions. This
involves flexural displacements in two directions, axial displacements and, in addition to this,
twist of the beam. It is assumed that the beam element is straight, of the lengthl and with
constant cross-section. The element relation is describedin a principal axes(x, y, z)-coordinate
system with origin at the left end-section and thex-axis placed along the bending centres of the
cross-sections. Only St. Venant torsion is taken into consideration. The axial stiffnessEA, the
shear stiffnessesGAy andGAz in the y- andz-directions, respectively, the torsional stiffness
GK, and the principal inertial bending stiffnessesEIy andEIz around they- andz-axes are all
constant along the beam element.

The degrees of freedom of the element are made up by the 6 componentswx,j , wy,j andwz,j ,
j = 1, 2, providing the displacements of the bending centres, and the 6 componentsθx,j , θy,j

andθz,j defining the rotation of the end-sections. Again,j = 1 andj = 2 refer to the left and
right end-sections, respectively. The nodal reaction forces conjugated to the indicated degrees
of freedom consist of the axial forcesQy,j andQz,j in the y- andz-directions, respectively,
the torsional momentsMx,j and the bending moment componentsMy,j andMz,j in they- and
z-directions. Finally, the element loadings consist of constant loads per unit length{qx, qy, qz}
and constant moment loads per unit length{mx, my, mz} in the x-, y- andz-directions. No
concentrated element forces or moments are considered. Theloadsqy and qz as well as the
shear forcesQy,j andQz,j are assumed to act through the so-calledshear centre, leading to an
uncoupling of the flexural and torsional deformations. The definition of the shear centre and
further details about uncoupling of torsional and flexural displacements are given in Chapter 2.
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Figure 1–21 Three-dimensional Timoshenko beam element with definitionof degrees of freedom, nodal reaction forces,
element loads and sectional properties.

The element equilibrium equations may be expressed on the matrix form, cf. Eq. (1–86),

re = Kewe + fe (1–100)

Here,re andwe are 12-dimensional column vectors storing the reaction forces and the element
degrees of freedom, respectively, cf. Eqs. (1–84) and (1–85),

re =
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=








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
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

. (1–101)

Likewise, fe is 12-dimensional column vector storing the contributionsto the reaction forces
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from the element loads, given as, cf. Eq. (1–87),

fe =
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]

=
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





, (1–102)

whereΦy andΦz are given as, cf. Eq. (i) in Example 1.3,

Φy = 12
EIz

GAyl2
, Φz = 12

EIy

GAzl2
. (1–103)

Finally,Ke specifies the element stiffness given as, cf. Eq. (1–99),

Ke =


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where








kz
11 kz

12 kz
13 kz

14

kz
22 kz

23 kz
24

kz
33 kz

34

kz
44









=
EIz

(1 + Φy)l2









12 6l −12 6l
(4 + Φy)l2 −6l (2 − Φy)l2

12 −6l
(4 + Φy)l2









, (1–105)









ky
11 ky

12 ky
13 ky

14

ky
22 ky

23 ky
24

ky
33 ky

34

ky
44









=
EIy

(1 + Φz)l2









12 −6l −12 −6l
(4 + Φz)l

2 6l (2 − Φz)l
2

12 6l
(4 + Φz)l

2









. (1–106)
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The element equilibrium relation provided by Eq. (1–100) presumes that only St. Venant
torsion is taken into consideration, corresponding to the torsional equilibrium equations
[

Mx,1

Mx,2

]

=
GK

l

[

1 −1
−1 1

] [

θx,1

θx,2

]

−
1

2
mxl

[

1
1

]

. (1–107)

The torsional constantK is determined in the next chapter. It will be shown that the inclusion
of Vlasov torsion requires the introduction of two extra degrees of freedomdθx,1

dx and dθx,2

dx .
The conjugated generalised stresses are the so-called bimoments. Hence, a Timoshenko beam
element, where both St. Venant and Vlasov torsion are taken into consideration, is described by
a total of 14 degrees of freedom.

1.8 Summary

In this chapter, the basic theory of Timoshenko and Bernoulli-Euler beams in three-dimensional
space has been presented. Some of the main topics covered aresummarised below.

Beams are one-dimensional structures that may carry loads in three dimensions including axial
forces, shear forces in two orthogonal directions and moments around three directions.

Bernoulli-Euler beam kinematicsassume that cross-sections remain orthogonal to the beam
axis during deformation. Hence, no shear deformation occurs.

Timoshenko beam kinematicsinclude shear flexibility, but still a cross-section remains plane
during deformation. Hence, shear strains and stresses are homogeneous over the beam height.

The bending centreof a beam cross-section is defined as the point of attack of an axial force
not producing a bending moment.

The principal axesof a beam cross-section are defined as the axes around which a bending
moment will neither produce an axial force nor flexural displacements in the other direction.

The principle of virtual forces can by applied to the analysis of deformations in a beam. In the
case of Timoshenko beam theory, both shear and bending deformation occurs, whereas only
bending deformation is present in a Bernoulli-Euler beam.

Plane beam elementshave six degrees of freedom with three at either end,i.e. two displace-
ments and one in-plane rotation. In the general case, the rotations and the axial displacements
are coupled, but in a principle-axes description, they become uncoupled.

Spatial beam elementshave 12 degrees of freedom, that is three displacements and three rota-
tions at either end. Generally, the displacements and rotations are coupled, but an uncoupling
can be achieved by a proper choice of coordinate system.

Thus, a detailed description has been given of the lateral and flexural deformations in a beam.
However, in this chapter only a brief introduction has been given to twist and torsion of a beam.
A thorough explanation and analysis of these phenomena willbe the focus of the next chapter.
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CHAPTER 2
Shear stresses in beams due to

torsion and bending

In this chapter, a theoretical explanation is given for the shear forces in beams stemming from
bending as well as torsion. In this regard, the coupling of torsion and bending is discussed, and
the so-called shear centre is introduced. The derivations are confined to homogeneous torsion, or
St. Venant torsion. Later, the strains and stresses provided in the case of non-homogeneous torsion,
or Vlasov torsion, will be dealt with.

2.1 Introduction

When the beam is exposed to the loads per unit lengthqy andqz, the beam will generally deform
with bending deformations{uy, θz} and{uz, θy}, respectively. Depending on the line of action
of these loads, the bending deformations will be combined with a torsional rotationθx around
thex-axis as illustrated in Fig. 2–1a and Fig. 2–1c. Under certain conditions, the bending of the
beam is not associated with a torsional deformation. This happens if the loads per unit length
qy andqz, the reaction forces at the ends of the beam as well as the shear forcesQy andQz are
acting through a special pointS, known as theshear centre, as illustrated in Fig. 2–1b.

When this is the case, torsion is caused solely by the moment loadmx per unit length, which
in part includes contributions from the translation ofqy andqz toS. These torsional deformations
take place without bending deformation as illustrated in Fig. 2–1d. Hence, bending and torsion
can be analysed independently.

The position of the shear centre depends on the geometry of the cross-section and is generally
different from the position of the bending centreB. However, for double-symmetric cross-
sections, the positions of the bending and torsion centres will coincide.

The shear forcesQy andQz as well as the torsional momentMx bring about shear stresses
σxy andσxz on the beam section. In what follows these will be determinedindependently for
the two deformation mechanisms. Hence,qy andqz are presumed to be referred to the shear
centre. The shear stresses caused by the torsional momentMx are statically equivalent to the
shear forcesQy = Qz = 0. The position of the shear centre has no influence on the distribution
of shear stresses in this case.

Likewise, in the decoupled bending problem, in which the cross-section is exposed to the
shear forcesQy andQz, the position of the shear centre is determined from the requirement
that the resulting shear stresses are statically equivalent to Qy andQz, and produce the torsional
momentMx = 0 aroundS.
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BB

BB

(a) (b)

(c) (d)

xx

xx

yy

yy

zz

zz

Qy, qyQy, qy

Qy, qy

SS

SS

Mx, mx

Figure 2–1 Coupled and uncoupled bending and torsion. Coupling existsin cases (a) and (c), whereas cases (b) and (d)
involve no coupling.

2.2 Homogeneous torsion (St. Venant torsion)

It is assumed that the torsional momentMx and the incremental twist per unit lengthdθx/dx and
the warping of the cross-sections remain unchanged along the beam. Then all cross-sections of
the beam are exposed to the same distribution of the shear stressesσxy andσxz. For this reason,
this case is referred to ashomogeneous torsion. Since the solution of the problem was given
by St. Venant (ref.), the case is also calledSt. Venant torsion. Inhomogeneous torsion refers to
the case, where eitherMx or the material properties vary along the beam. Thendθx/dx or the
warping will vary as well.

Figure 2–2a shows a cross-section of a cylindrical beam of the lengthl. The cross-sectional
area isA. The curve along the outer periphery is denotedΓ0. The cross-section may have a
numberN of holes determined by the boundary curvesΓj , j = 1, 2, . . . , N . At the boundary
curves arc-length coordinatess0, s1, . . . , sN are defined. The arc-length coordinates0 along
Γ0 is orientated in the anti clock-wise direction, whereass1, s2, . . . , sN , related to the interior
boundariesΓ1, Γ2, . . . , ΓN , are orientated in the clock-wise direction. The outward directed unit
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Figure 2–2 Cross-section with holes: (a) Interior and exterior edges;(b) definition of local(x, nj , sj)-coordinate
systems.

vector on a point of the exterior or interior boundariesΓj is denotednj , j = 0, 1, . . . , N . The
unit tangential vector to a boundary curve is denotedsj and is co-directional to the arc-length
coordinatesj , see Fig. 2–2b. Thus, a local(x, nj , sj)-coordinate system may be defined with
the base unit vectors{i,nj, sj}. The indicated orientation of the exterior and interior arc-length
coordinatessj , j = 0, 1, . . . , N , insures that the related(x, nj , sj)-coordinate system forms a
right-hand coordinate system.

The beam material is assumed to be homogeneous, isotropic linear elastic with the shear
modulusG. In homogeneous torsion, only shear stresses are present for which reasonG is the
only needed elasticity constant.

2.2.1 Basic assumptions

For convenience the indexx is omitted on the twistθx (the rotation angle around thex-axis),
i.e. θ ∼ θx. Figure 2–3 shows a differential beam element of the lengthdx. Both end-sections
of the element are exposed to the torsional momentMx, so the element is automatically in
equilibrium. On the left and right end-sections the twists are θ andθ + dθ, respectively. The
incrementdθ may be written as

dθ =
dθ

dx
dx. (2–1)

SinceMx and the material properties are the same in all cross-sections,dθ/dx must be constant
along the beam. Further, the warping must be the same in all cross-sections,i.e. ux = ux(y, z).
This implies that the warping in homogeneous torsion does not induce normal strains,i.e.

εxx =
∂ux

∂x
= 0. (2–2)

In turn this means that the normal stress becomesσxx = Eεxx = 0. Hence, only the shear
stressesσxy andσxz are present on a cross-section in homogeneous torsion.
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Figure 2–3 Beam and differential beam element subjected to homogeneous torsion.

The only deformation measure of the problem is the twist gradientdθ/dx. Then, due to the
linearity assumptions, the torsional momentMx must depend linearly ondθ/dx. Further,σxy

andσxz (and henceMx) depend linearly onG. This implies the following relation:

Mx = GK
dθ

dx
. (2–3)

The proportionality constantK with the dimension [unit of length]4 is denoted thetorsional
constant. The determination of this constant is a part of the solutionof the torsion problem.

2.2.2 Solution of the homogeneous torsion problem

As for all beam theories, the shape of the cross-section is assumed to be preserved during the
deformation. Then, the displacements in the(y, z)-plane are caused merely by the rotationθ
around the shear centreS. The warping displacementsux must also be linearly dependent on the
strain measuredθ/dx, corresponding to the last term in Eq. (1–13). This implies the displacement
components

ux = ux(y, z) = ω(y, z)
dθ

dx
, uy = −(z − zs)θ, uz = (y − ys)θ. (2–4)

Hereω(y, z) is the so-calledwarping functionas discussed in Section 1.2.2, and its determination
constitutes the basic part of the solution of the homogeneous torsion problem.

Similarly to Eq. (1–14), it follows from Eq. (2–4) that the components of the strain tensor
become:

εxx =
∂ux

∂x
= 0, εyy =

∂uy

∂y
= 0, εzz =

∂uz

∂z
= 0, (2–5a)
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εyz =
1

2

(

∂uy

∂z
+

∂uz

∂y

)

=
1

2
(−θ + θ) = 0, (2–5b)

εxy =
1

2

(

∂ux

∂y
+

∂uy

∂x

)

=
1

2

(

∂ω

∂y
− (z − zs)

)

dθ

dx
, (2–5c)

εxz =
1

2

(

∂ux

∂z
+

∂uz

∂x

)

=
1

2

(

∂ω

∂z
+ (y − ys)

)

dθ

dx
. (2–5d)

As seen onlyεxy andεxz are non-vanishing. Correspondingly, all components of theCauchy
stress tensor become equal to zero, save the shear stressesσxy andσxz. These are given as

σxy = σxy(y, z) = 2Gεxy = G

(

∂ω

∂y
− (z − zs)

)

dθ

dx
, (2–6a)

σxz = σxz(y, z) = 2Gεxz = G

(

∂ω

∂z
+ (y − ys)

)

dθ

dx
. (2–6b)

Ignoring the volume loads, the equilibrium equations read

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0, (2–7a)

∂σxy

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= 0, (2–7b)

∂σxz

∂x
+

∂σyz

∂y
+

∂σzz

∂z
= 0. (2–7c)

With σxx = σyy = σzz = σyz = 0, andσxy andσxz only dependent ony andz, the two last
equations are identically fulfilled, and the first equation reduces to

∂σxy

∂y
+

∂σxz

∂z
= 0. (2–8)

Equation (2–8) may be formulated at a point on the boundary curveΓj , j = 0, 1, . . . , N , in
the related local(x, nj , sj)-coordinate system. Ignoring the indexj, the non-trivial equilibrium
equation then reads

∂σxn

∂n
+

∂σxs

∂s
= 0, (2–9)

whereσxn andσxs denote the shear stresses along the localn- ands-axes. According to Cauchy’s
boundary condition (ref.),σxn can be expressed in terms of the shear stress componentsσxy and
σxz as

σxn = σxyny + σxznz. (2–10)

Hereny andnz denote the components of the unit normal vectorn along they- andz-axes.
The symmetry of the stress tensor implies thatσxn = σnx. Further, since the exterior and all

interior surfaces are free of surface traditions, corresponding toσnx = 0, it follows thatσxn = 0
(see Fig. 2–4). Then, Eq. (2–10) reduces to

σxyny + σxznz = 0. (2–11)
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x
n

σxn σnx = 0

Figure 2–4 Shear stress in the normal direction at an exterior or interior boundary.

Finally, insertion of Eq. (2–6) into Eq. (2–11) provides thefollowing boundary condition formu-
lated in the warping function

∂ω

∂y
ny +

∂ω

∂z
ny − (z − zs)ny + (y − ys)nz = 0 ⇒

∂ω

∂n
= (z − zs)ny − (y − ys)nz, (2–12)

where∂ω/∂n denotes the partial derivative ofω in the direction of the outward directed unit
normal.

Equation (2–12) must be fulfilled at the exterior and all interior boundaries. The partial
differential forω to be fulfilled in the interiorA of the profile follows from insertion of Eq. (2–6)
into the equilibrium equation (2–8), leading to

∂2ω

∂y2
+

∂2ω

∂z2
= 0. (2–13)

If a solution to Eq. (2–13) with the boundary conditions (2–12) is obtained, the shear stresses are
subsequently determined from Eq. (2–10). Equation (2–13) is Laplace’s differential equation,
and the boundary conditions Eq. (2–13) are classified as the so-called Neumann boundary con-
ditions. Notice that the solution to Eqs. (2–12) and (2–13) is not unique. Actually, ifω(y, z) is a
solution, thenω(y, z)+ω0 will be a solution as well, whereω0 is an arbitrary constant. Since the
shear stresses are determined by partial differentiation of the of the warping function, all these
solutions lead to the same stresses. The boundary value problem for the warping function has
been summarised in Box 2.1.
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Box 2.1 Boundary value problem for the warping function

The differential equation, representing the non-trivial equation of equilibrium, reads:

∂2ω

∂y2
+

∂2ω

∂z2
= 0, (y, z) ∈ A. (2–14a)

The Neumann boundary condition, representing the relevantCauchy boundary condition, reads:

∂ω

∂n
= (z − zs)ny − (y − ys)nz, (y, z) ∈ Γ0 ∪ Γ1 ∪ · · · ∪ ΓN . (2–14b)

An alternative formulation for the solution of the problem can be obtained by the introduction
of the so-calledPrandtl’s stress functionS with the defining properties

σxy =
∂S

∂z
, σxz = −

∂S

∂y
. (2–15)

Upon insertion of Eq. (2–15) into Eq. (2–9), the equilibriumequation is seen to be identical
fulfilled, i.e.

∂σxy

∂y
+

∂σxz

∂z
=

∂2S

∂y∂z
−

∂2S

∂z∂y
≡ 0. (2–16)

From Eq. (2–6) follows

∂σxy

∂z
−

∂σxz

∂y
=

(

∂2ω

∂z∂y
− 1

)

G
dθ

dx
−

(

∂2ω

∂y∂z
+ 1

)

G
dθ

dx
= −2G

dθ

dx
. (2–17)

Then, the differential equation forS is obtained by insertion of Eq. (2–15) on the left-hand side
of Eq. (2–17), leading to

∂2S

∂y2
+

∂2S

∂z2
= −2G

dθ

dx
. (2–18)

Equation (2–18) is a compatibility condition forS in order that the kinematical conditions (2–6)
are fulfilled.

The boundary condition forS follow upon insertion of Eq. (2–15) into Eq. (2–11),i.e.

∂S

∂z
ny −

∂S

∂y
nz = 0 (2–19)

The tangential unit vector is given assT = [sy, sz] = [−nz, ny], cf. Fig. 2–2b, where{ny, nz}
denotes the Cartesian components of the outward directed unit normal vector at any of the bound-
ary curvesΓj , j = 0, 1, . . . , N , cf. Fig. 2–2b. Then, Eq. (2–19) may be written as

∂S

∂y
sy +

∂S

∂z
sz =

∂S

∂s
= 0. (2–20)

where∂S/∂s denotes the directional derivative ofS in the direction of the tangential unit vector
s. Equation (2–20) implies thatS is constant along the exterior and the interior boundary curves,
i.e.

S = Sj , j = 0, 1, . . . , N. (2–21)
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Equation (2–18) is a Poisson differential equation (inhomogeneous Laplace equation), and the
boundary conditions Eq. (2–21) are classified as the so-called Dirichlet boundary conditions.
In principle, the solution to the indicated boundary value problem is unique. The problem is
that the constant valuesSj of the stress function along the boundary curves are unknown. The
determination of these is a part of the problem. For profiles with interior holes this is only
possible by the introduction of additional geometric conditions. The boundary value problem
for the Prandtl stress function has been summarised in Box 2.2. The formulation in terms of
Prandtl’s stress function is especially useful in relationto homogeneous torsion of thin-walled
profiles and will be utilised in a number of examples below.

Box 2.2 Boundary value problem for the Prandtl stress function

The equilibrium equation is automatically fulfilled. The compatibility condition is represented by the
following differential equation:

∂2S

∂y2
+

∂2S

∂z2
= −2G

dθ

dx
, (x, y) ∈ A. (2–22a)

The Dirichlet boundary condition, representing the Cauchyboundary condition, reads:

S = Sj , j = 0, 1, . . . , N, (x, y) ∈ Γ0 ∪ Γ1 ∪ · · · ∪ ΓN . (2–22b)

The shear stressesσxy andσxz must be statically equivalent to the shear forcesQy = Qz =
0 and the torsional momentMx. Application of Gauss’s theorem on the vector fieldvT =
[vy , vz] = [0, S] provides,

Qy =

∫

A

σxydA =

∫

A

(

∂0

∂y
+

∂S

∂z

)

dA =
N
∑

j=0

∮

Γj

(0 ·dz −S ·dy) = −
N
∑

j=0

Sj

∮

Γj

dy, (2–23)

where the circulation is taken anticlockwise alongΓ0 and clockwise alongΓj , j = 1, · · · , N .
Further it has been used thatSj is constant along the boundary curve, and hence may be trans-
ferred outside the circulation integral. Now,

∮

Γj
dy = 0. Hence, it follows that any solution

to the boundary value problem defined by Eqs. (2–22a) and (2–22b) automatically provides a
solution fulfilling Qy = 0. UsingvT = [S, 0] it can in the same way be shown that

Qz =

∫

A

σxzdA = −

∫

A

(

∂S

∂y
+

∂0

∂z

)

dA ⇒

Qz = −

N
∑

j=0

∮

Γj

(S · dz − 0 · dy) = −

N
∑

j=0

Sj

∮

Γj

dz = 0. (2–24)

The torsional momentMx must be statically equivalent to the moment of the shear stresses
aroundS, i.e.

Mx =

∫

A

((y − yS)σxz − (z − zS)σxy) dA =

∫

A

(yσxz − zσxy)dA, (2–25)

DCE Lecture Notes No. 23



2.2 Homogeneous torsion (St. Venant torsion) 53

B

y

y

z
z

S

Mx

yS

zS

σxy

σxz

dA

Figure 2–5 Static equivalence of torsional moment to shear stresses.

where it has been used that
∫

A
σxydA =

∫

σxzdA = 0. Next, insertion of Eq. (2–15) provides

Mx = −

∫

A

(

y
∂S

∂y
+ z

∂S

∂z

)

dA = −

∫

A

(

∂

∂y
(yS) +

∂

∂z
(zS)

)

dA + 2

∫

A

SdA. (2–26)

The divergence theorem withvT = [yS, zS] provides

∫

A

(

∂

∂y
(yS) +

∂

∂z
(zS)

)

dA =
N
∑

j=0

∮

Γj

(ySdz − zSdy) =
N
∑

j=0

Sj

∮

Γj

(ydz − zdy). (2–27)

Let A0 andAj denote the area inside the boundary curvesΓ0 andΓj. Then, use of Eq. (1–4a) in
Eq. (2–27) provides

∫

A

(

∂

∂y
(yS) +

∂

∂z
(zS)

)

dA = 2A0S0 −

N
∑

j=1

2AjSj . (2–28)

The negative sign of the last term is because the circulationon the interior boundaries is taken
clockwise, cf. the discussion subsequent to Eq. (1–4a). Insertion of Eq. (2–28) gives the follow-
ing final result:

Mx = −2A0S0 + 2

∫

A

SdA + 2
N
∑

j=1

AjSj . (2–29)

The shear stresses remain unchanged if an arbitrary constant is added toS. Then, without re-
striction one can chooseS0 = 0, which is assumed in what follows.

Let the domain of definition forS(y, z) be extended to the interior of the holes, whereS(y, z)
is given the same valueSj as the boundary value along the holes. WithS0 = 0, Eq. (2–29)
determinesMx as twice the volume belowS(y, z). Further, withS(x, y) determined along with

Elastic Beams in Three Dimensions



54 Chapter 2 – Shear stresses in beams due to torsion and bending

B

y

z

z

Γ0, S0 = 0

Γ1

S1

S(0, z)

Figure 2–6 Variation of Prandtl’s stress function over a cross-section with a hole.

the boundary valuesSj , j = 1, 2, . . . , N , the torsional constantK can next be determined upon
comparison of Eqs. (2–3) and (2–29). This is illustrated by examples below.

It is remarkable that no reference is made to the position of the shear centre, neither in the
boundary value problem (2–22), for the Prandtl stress function, nor in the expression (2–25) for
the torsional moment. In contrast, the coordinates of the shear centre enter the boundary value
problem (2–14) for the warping function.

Defining the same homogeneous torsion problem, the warping function and Prandtl’s stress
function cannot be independent function. The relation follows from a comparison of Eqs. (2–6)
and (2–15):

∂S

∂z
=

(

∂ω

∂y
− (z − zs)

)

G
dθ

dx
, (2–30a)

−
∂S

∂y
=

(

∂ω

∂z
+ (y − ys)

)

G
dθ

dx
, (2–30b)

where it is recalled thatθ ∼ θx.

Example 2.1 Homogeneous torsion of infinitely long rectangular cross-section

Figure A shows an infinitely long rectangular cross-sectionwith the thicknesst exposed to a torsional
momentMx. The torsional moment is carried by shear stresses uniformly distributed in they-direction.
Then,S = S(z) is independent ofy, and the boundary value problem (2–22) reduces to

d2S

dz2
= −2G

dθ

dx
, S(−t/2) = S(t/2) = 0 (a)

with the solution

S(z) = −1

4
(4z2 − t2)G

dθ

dx
. (b)

(continued)
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The shear stresses follow from Eq. (2–15):

σxy =
∂S

∂z
= −2zG

dθ

dx
, σxz = 0. (c)

The shear stresses are linearly distributed in the thickness direction, and has been illustrated in Fig. A.

y y

z z

t

dy dy

dMxτ = G dθ
dx

t

σxs = σxy

Figure A Torsion of a infinitely long rectangular cross-section: Distribution of shear stresses (left); torsional moment
on differential cross-sectional segment (right).

Due to the independence of the shear stresses ony, the torsional problem can be analysed by merely
considering a differential cross-sectional segment of thelengthdy exposed to the torsional momentdMx,
see Fig. A. The incrementdMx is related to the stress function by Eq. (2–28),i.e.

dMx = 2

∫ t/2

−t/2

S(z)dzdy =
1

2
dyG

dθ

dx
,

∫ d/2

−t/2

(4z2 − t2)dz =
1

3
t3dyG

dθ

dx
. (d)

At the same timedMx = GdKdθ/dx, wheredK denotes the torsional constant related to the differential
segment. As seen from Eq. (d), this is given as

dK =
1

3
d3dy. (e)

The valuedK of the torsional constant for the differential segment willbe applied below. �

Example 2.2 Homogeneous torsion of a solid ellipsoidal cross-section

Figure A shows an ellipsoidal cross-section without holes with semi-axesa andb, exposed to a torsional
momentMx. At first, it is verified that the Prandtl’s stress-function of this problem is given as

S(y, z) = − a2b2

a2 + b2

(

y2

a2
+

z2

b2
− 1

)

G
dθ

dx
. (a)

(continued)
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y

z

a

b

Mx

Γ0

Figure A Ellipsoidal cross-section.

The boundary curveΓ0 is described by the ellipsis

y2

a2
+

z2

b2
= 1. (b)

Hence,S(x, y) = 0 for (y, z) ∈ Γ0, so the boundary condition (2–22b) is fulfilled by Eq. (a). The
Laplacian ofs(y, z) becomes

∂2S

∂y2
+

∂2S

∂z2
= − a2b2

a2 + b2

(

2

a2
+

2

b2

)

G
dθ

dx
= −2G

dθ

dx
. (c)

Then, also the differential equation (2–22a) is fulfilled, from which is concluded that Eq. (a) is indeed the
solution to the homogeneous torsion problem.

From Eq. (2–29) follows that

Mx = 2

∫

A

SdA = −2
a2b2

a2 + b2
G

dθ

dx

∫

A

(

y2

a2
+

z2

b2
− 1

)

dA = π
a3b3

a2 + b2
G

dθ

dx
, (d)

where the following result has been utilised:

∫

A

(

y2

a2
+

z2

b2
− 1

)

dA = −π

2
ab. (e)

From Eq. (2–3) and Eq. (d) follows that the torsional constant for an ellipsoidal cross-section becomes:

K = π
a3b3

a2 + b2
. (f)

Gdθ/dx follows from Eq. (d),i.e.

G
dθ

dx
=

1

π

a2 + b2

a3b3
Mx. (g)

Then, the shear stresses become, cf. Eqs. (2–15) and (a):

σxy =
∂S

∂z
= −2z

b2

a2b2

a2 + b2
· 1

π

a2 + b2

a3b3
Mx = − 2

π

Mx

ab3
z, (h)

σxz = −∂S

∂y
=

2y

a2

a2b2

a2 + b2
· 1

π

a2 + b2

a3b3
Mx =

2

π

Mx

a3b
y. (i)

(continued)

DCE Lecture Notes No. 23



2.2 Homogeneous torsion (St. Venant torsion) 57

The warping of the cross-section is given by Eq. (2–4). Due tothe symmetry of the cross-section, it is
observed thatys = zs = 0, i.e. the shear centre coincides with the bending centre. Then, the warping
function is determined from, cf. Eq. (2–30):

∂ω

∂y
=

1

Gdθ/dx

∂S

∂z
+ z = − 2a2

a2 + b2
z + z =

b2 − a2

b2 + a2
z, (j)

∂ω

∂z
= − 1

Gdθ/dx

∂S

∂y
− y =

2b2

a2 + b2
y − y =

b2 − a2

b2 + a2
y. (k)

The solution to Eqs. (j) and (k) is given as

ω(y, z) =
b2 − a2

b2 + a2
yz. (l)

It is left as an exercise to prove that Eq. (l) fulfils the boundary value problem (2–14).
The warping follows from Eq. (2–4), Eq. (g) and Eq. (l)

ux(y, z) = ω(y, z)
dθ

dx
=

b2 − a2

a2 + b2
yz · 1

π

a2 + b2

a3b3

Mx

G

1

π

b2 − a2

a3b3
yz

Mx

G
. (m)

The solution (l) has been chosen so that the warping from torsion provided by Eq. (m) is zero at the
bending centre. This will generally be presumed in what follows. Then, the displacement of the bending
centre in thex-direction is caused entirely by the axial forceN . Finally, it is noted that, especially for a
circular profile witha = b, the warping vanishes everywhere on the profile. �

2.2.3 Homogeneous torsion of open thin-walled cross-secti ons

Figure 2–7 shows an open cross-section of a cylindrical beam. An arc-length coordinates is
defined along the midpoints of the profile wall, wheres = 0 is chosen at one of the free ends,
ands = L at the other free. Further,L specifies the total length of the profile wall, and the wall
thickness at arc-length coordinates is denotedt(s).

S

Mx, mx

τ

σxs

s

s

n

s = L

s = 0

ds

t(s)

Figure 2–7 Open thin-walled cross-section of cylindrical beam exposed to homogeneous torsion.
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For thin-walled cross-sections it is assumed thatt(s) ≪ L. Then, the profile can be consid-
ered as built-up of differential rectangles of the lengthds, similar to those considered in Exam-
ple 2.2. Each has the torsional constantdK = 1

3 t3(s)ds, cf. Eq. (e) in Example 2.2. Hence, the
torsional constant for the whole profile is given as

K =
1

3

∫

L

t3(s)ds, (2–33)

where the indexL indicates that the line integral is extended over the whole length of the profile
measured along the profile wall.

The shear stresses are specified in a local(x, n, s)-coordinate system as shown in Fig. 2–7.
These coordinates follow from Eq. (c) upon replacingy with s andz with w. Then,

σxs = 2nG
dθ

dx
, σxn = 0. (2–34)

Finally, usingGdθ/dx = Mx/K, the maximum shear stresses forn = t(s)/2 becomes

τ = G
dθ

dx
t(s) =

Mx

K
t(s). (2–35)

The computation of the shear stress in aU -profile is considered in the example below.

Example 2.3 Homogeneous torsion of a U -profile

Figure A shows aU -profile exposed to homogeneous torsion from the torsional momentMx. With the
thin-wall approximationt ≪ a, the position of the bending centre is as shown in the figure. Further, the
cross-sectional area and the bending moments of inertia around they- andz-axes become

A = 10at, Iy =
64

15
a3t, Iz =

26

3
a3t, (a)

where the single indicesy and z indicate that the corresponding axes are principal axes. The cross-
sectional constants given in Eq. (a) have been calculated for later use. With reference to Eq. (2–33), the
torsional constant becomes:

K =
2

3
2a(2t)3 +

1

3
2at3 =

34

5
a3t. (b)

(continued)
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τ
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Figure A Homogeneous torsion ofU -profile: Dimensions (left) and shear stresses (right).

The distribution of shear stresses follows from Eq. (2–35).The maximum shear becomesτ and2τ ,
respectively, whereτ is given as

τ =
Mx

K
t =

3

34

Mx

at2
. (c)

Hence, in the present case, the shear stresses in the flanges are higher than those in the web. �

2.2.4 Homogeneous torsion of closed thin-walled cross-sec tions

The boundary value problem for the warping functionω(y, z), defined by Eq. (2–14), has a
unique solution (save an arbitrary additive constant) no matter if the profile has an interior hole
or not. Although an analytical solution is seldom obtainable, a numerical solution can always
be achieved by a discretization of the Laplace operator by a finite-difference or a finite-element
approach.

In contrast to this, the boundary value problem defined by Eq.(2–22) for Prandtl’s stress
function cannot immediately be solved, because the boundary valuesSj , j = 1, 2, . . . , N , are
not known. The determination of these values requires the formulation of additional geomet-
rical conditions which express that the warping functionω(y, z) shall be continuous along the
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boundary curvesΓj . This may be formulated as
∮

Γj

dω =

∮

Γj

(

∂ω

∂y
dy +

∂ω

∂z
dz

)

= 0, j = 1, 2, . . . , N. (2–37)

Equation (2–37) can be expressed in the stress function by use of Eq. (2–30):
∮

Γj

(

∂S

∂z
dy −

∂S

∂y
dz

)

+ G
dθ

dx

∮

Γj

((z − zs)dy − (y − ys)dz) = 0. (2–38)

It can be shown that the integrand of the first integral can be rewritten in terms of the coordinates
s andn by the substitution

∂S

∂z
dy −

∂S

∂y
dz = −

∂S

∂n
ds. (2–39)

The second integral in Eq. (2–38) may be recast as
∮

Γj

((z − zs)dy − (y − ys)dz) = −

∮

Γj

(ydz − zdy) = 2Aj . (2–40)

The change of sign in Eq. (2–40) is because all circulations are taken clockwise. Further, it has
utilised that

∮

Γj
ysdz = ys

∮

Γj
dz = 0 and

∮

Γj
zsdy = 0. Insertion of Eqs. (2–39) and (2–40)

into Eq. (2–38) provides the following form for the geometrical conditions:
∮

Γj

∂S

∂n
ds = 2AjG

dθ

dx
. (2–41)

Only thin-walled cross-sections are considered. At first a cross-section with a single cell
is considered as shown in Fig. 2–8. An arc-length coordinateis introduced, orientated in the
clockwise direction. Correspondingly, a local(x, n, s)-coordinate system is defined at each point
of the boundary curve with then-axis orientated inward into the cavity, whereas thes-axis is
tangential to the boundary curve and unidirectional to the arc-length coordinate. Then, the shear
stresses along then- ands-directions become, cf. Eq. (2–15),

σxn =
∂S

∂s
, σxs = −

∂S

∂n
. (2–42)

Here,S is constant along the exterior and interior boundary curve of the wall, given asS = S0 =
0 andS = S1, respectively. Hence,σxn = 0 along these boundaries. If the thicknesst(s) of the
wall is small compared to a characteristic diameter of the profile, it then follows from continuity
thatσxn is ignorable in the interior of the wall,i.e.

σxn ≃ 0. (2–43)

The stress function decreases fromS = S1 at the inner side of the wall toS = S0 = 0 at
the outer side. Ift(s) is small, the variation ofS(n, s) must vary approximately linearly over the
wall thicknesst(s), see Fig. 2–8. This implies the following approximation

σxs = −
∂S

∂n
≃ −

S1 − S0

t(s)
= −

S1

t(s)
. (2–44)
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Figure 2–8 Closed thin-walled cross section of a cylindrical beam exposed to homogeneous torsion.

Then, the geometrical condition Eq. (2–41) may be written as

S1

∮

Γ1

ds

t(s)
= 2A1G

dθ

dx
, (2–45)

whereA1 is area of the cavity.
The torsional moment is given by Eqs. (2–3) and (2–29):

Mx = GK
dθ

dx
= 2A1S1 (2–46)

Combining Eq. (2–45) and Eq. (2–46) provides the following result for the torsional constant:

K = 2A1
S1

Gdθ/dx
=

4A2
1

J
, J =

∮

Γ1

ds

t(s)
. (2–47)

Equation (2–47) is known asBredt’s formula.
The shear stresses follow from Eqs. (2–44) and (2–46):

σxs(s) = −
S1

t(s)
= −

Mx

2A1t(s)
. (2–48)

Notice, that the shear stressσxs(s) is uniformly distributed over the wall-thickness as shown in
Fig. 2–8. This is in contrast to an open section, where a linear variation was obtained, as given
by Eq. (2–34) .
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Example 2.4 Homogeneous torsion of a closed thin-walled cross-section

Figure A shows the cross-section of a beam with a single cell exposed to homogeneous torsion. The
thin-wall approximationt ≪ a is assumed to be valid.

MxMx

t

t

t

2t

2t

2t

1
6
τ

1
6
τ

1
6
τ

1
12

τ

1
12

τ

1
12

τ

a

aa

a

n

s

Figure A Homogeneous torsion of a closed thin-walled cross-section: Geometry (left) and distribution of shear
stresses withτ = Mx/(a2t) (right).

The area of the cavity and the line integral entering Eqs. (2–45) and (2–47) become

A1 = 3a2,

∮

Γ1

ds

t(s)
=

4a

t
+

4a

2t
=

6a

t
. (a)

Then, the torsional constant becomes, cf. Eq. (2–47),

K =
4(3a2)2

6a/t
= 6a3t. (b)

The shear stresses follow from Eq. (2–48):

σxs = − Mx

6a2t(s)
. (c)

The distribution has been shown in Fig. A along with the direction of action. Note thatτ = Mx/(a2t)
has been introduced as a normalisation quantity. �

Example 2.5 Comparison of homogeneous torsion of open and closed profiles

Figure A shows two cylindrical beams, both with a cylindrical thin-walled cross-section with the side
lengtha and the thicknesst. In one case, the cross-section is closed, whereas the cross-section in the
other case has been made open by a cut along a developer. The rotation gradientdθ/dx and the shear
stresses in two beams due to homogeneous torsion are compared below. (continued)
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Figure A Homogeneous torsion of open and closed cross-sections.

According to Eqs. (2–33) and (2–47), the torsional constants Ko andKc for the beams with open and
closed cross-sections are given as

Ko =
1

3

∫

t3(s)ds =
4

3
at3, (a)

Kc =
4A2

∮

ds
t

=
4a4

4a/t
= a3t. (b)

If the two beams are exposed to the same torsional momentMx, it follows from Eq. (2–3) that the rotation
gradientsdθo/dx anddθc/dx for the open and closed sections are related as

dθo/dx

dθc/dx
=

Kc

Ko
=

4

3

a2

t2
. (c)

Next, assume that both cross-sections are fully stressed,i.e. the maximum shear stressτo = τc is in
both cases equal to the yield shear stressτy. The corresponding torsional moments that can be carried
by the profiles are denotedMx,o andMx,c, respectively. With reference to Eqs. (2–35) and (2–48), these
torsional moment are related as

Mx,o

Mx,c
=

Koτy/t

2a2tτy
=

2

3

a

t
. (d)

Hence, whereas the deformations of the two beams depend on the fractiona2/t2, the torsional moment
which can be carried depends ona/t. In conclusion, open sections are extremely ill-conditioned to carry
torsional moments in homogeneous torsion compared to closed sections. However, in many cases another
mechanics is active, which involves inhomogeneous torsion. This substantially increases the torsional
properties of open sections. �

Elastic Beams in Three Dimensions



64 Chapter 2 – Shear stresses in beams due to torsion and bending

As illustrated by Example 2.5, closed thin-walled cross-sections,e.g. tubes and box gird-
ers, have a much higher torsional strength and stiffness than open thin-walled cross-section.
A mechanical explanation for the highly increased stiffness obtained for a closed cross-section
compared with the open cross-section is the fact that warping is hindered by the fact that the
displacements in the axial direction must be continuous along thes-direction,i.e.along the wall.
Especially, for a circular tube no warping is achieved in homogeneous torsion, making this profile
particularly useful for structural elements with the primary function of carrying torsional loads.

Next, consider a thin-walled cellular cross-section with atotal ofN cavities as illustrated in
Fig. 2–9. Each cavity has the cross-sectional areaAj , j = 1, 2, . . . , N , and the boundary of the
cell is denotedΓj . In each cell, a local(x, nj , sj)-coordinate system is defined with thenj-axis
oriented into the cavity as illustrated in Fig. 2–9. The local arc-length coordinatesj is defined
along the cell boundary in the clockwise direction, and the wall-thickness ist(sj).

B
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σxs(s) = −
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t(s)

σxs(s) = −
Sj−Sk

t(s)

Γ0

Γj

n

n

nn s

s

s

s

s1

sj

sk

sN

1

j

k

N

Figure 2–9 Cellular thin-walled cross section of a cylindrical beam exposed to homogeneous torsion.

As discussed in Subsection 2.2.2 and illustrated in Fig. 2–6, Prandtl’s stress functionS is
constant along each interior boundary. Hence, on the cell boundaryΓj , S has the constant value
Sj , j = 1, 2, . . . , N . However, different values of Prandtl’s stress function are generally present
on either side of a common wall between two adjacent cells,j andk. Because of the thin-wall
assumption the variation ofS over the wall thickness must be approximately linear. Hence, with
reference to Eq. (2–42),

σxs = −
∂S

∂nj
≃ −

Sj − Sk

t(sj)
. (2–51)

Thus,σxs is uniformly distributed over the wall-thickness as illustrated in Fig. 2–9. The shear
stress componentσxn vanishes alongΓj as well asΓk. It then follows from continuity thatσxn

is ignorable in the interior of the wall as well,i.e.

σxn ≃ 0. (2–52)
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Insertion of Eq. (2–51) into Eq. (2–41) provides:

∑

k

(Sj − Sk)

∫

Γjk

dsj

t(sj)
= 2AjG

dθ

dx
, j = 1, 2, . . . , N (2–53)

where the summation on the left-hand side is extended over all cavities adjacent to cellj. Notice
thatSk = 0 at the part of cellj adjacent to the outer periphery. Then, Eq. (2–53) representsN
coupled linear equations for the determination ofSj , j = 1, 2, . . . , N .

Subsequently the shear stressσxs in all interior and exterior walls is determined from Eq. (2–
51). According to Eq. (2–29), the torsional moment is given as

Mx = 2
N
∑

j=1

AjSj , (2–54)

where the contribution
∫

A
S dA can be ignored due to the thin-wall approximation. Then, the

torsional constant follows from Eq. (2–3):

K =
Mx

Gdθ/dx
= 2

N
∑

j=1

Aj
Sj

Gdθ/dx
. (2–55)

SinceSj turns out to be proportional toGdθ/dx, the right-hand side of Eq. (2–55) will be
independent of this quantity.

Example 2.6 Homogeneous torsion of a rectangular thin-wall profile with two cells

Figure A shows a rectangular thin-walled cross-section with two cells exposed to homogeneous torsion
from the torsional momentMx. The wall-thickness is everywheret ≪ a.
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nn

sss1 s2

1 2

2aa

a

Figure A Homogeneous torsion of a rectangular thin-walled cross-section with two cells. Definition of local coordi-
nate systems and distribution of shear stresses withτ = Mx/(a2t). (continued)
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For the two cells, Eq. (2–53) takes the form:

(S1 − 0)
a

t
+ (S1 − 0)

a

t
+ (S1 − 0)

a

t
+ (S1 − S2)

a

t
= 2a2G

dθ

dx
, (a)

(S2 − 0)
2a

t
+ (S2 − S1)

a

t
+ (S2 − 0)

a

t
+ (S2 − 0)

2a

t
= 2 · 2a2G

dθ

dx
. (b)

4S1 − S2 = 2atG
dθ

dx
, −S1 + 6S2 = 4atG

dθ

dx
. (c)

The solution of Eq. (c) reads

S1 =
16

23
atG

dθ

dx
, S2 =

18

23
atG

dθ

dx
, (d)

and by Eq. (2–54), the torsional moment is derived as

Mx = 2a2S1 + 22a2S2 =
104

23
a3tG

dθ

dx
⇒ G

dθ

dx
=

23

104

Mx

a3t
. (e)

Then,S1 andS2 may be written as

S1 =
8

52

Mx

a2
, S2 =

9

52

Mx

a2
. (f)

The shear stressesσxs follow from Eq. (2–51) and Eq. (f). The distribution has beenshown in Fig. A
with their direction of action. The quantityτ = Mx/(a2t) represents a normalisation quantity for the
shear stresses.

The torsional constant follows from Eq. (2–55) and Eq. (d)

K = 2 · a2 · 16

23
at + 2 · 2a2 · 18

23
at =

104

23
a3t. (g)

If the interior wall is skipped, the corresponding quantities become:

S1 =
1

6

Mx

a2
, σsx = −1

6

Mx

a2t
, K =

9

2
a3t. (h)

Hence, the interior wallincreasesthe shear stress in the exterior cell walls of the right cell from 1
6
τ to

9
52

τ (1.3%). The torsional constant is increased merely fromK = 9
2
a3t to K = 104

23
a3t (2.2%). �

As indicated by Example 2.6, only a small increase of the torsional stiffness is achieved by
the inclusion of internal walls in a cross-section. Hence, from an engineering point of view,
the benefits of applying structural members with a cellular cross-sections are insignificant in
relation to torsion. Since the advantages regarding flexural deformations are also limited, and
profiles with two or more cavities are not easily manufactured, it may be concluded that open
cross-sections are generally preferred for beams loaded inunidirectional bending. Likewise,
closed cross-sections with a single cavity (pipes or box girders) are preferable when the beam is
primarily subjected to torsion and/or bending in two directions.

Finally it is noted that the solution method based on Prandtl’s stress-function will only be
used in relation to hand calculation for thin-walled cross-sections with at most two or three cells.
Otherwise, for thick-walled sections or multi-cell problems, the homogeneous torsion problem
will be solved numerically by a finite-element approach or another spatial discretization method
based on the Neumann boundary problem specified in Box 2.1.
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2.3 Shear stresses from bending

In the previous section, the shear stresses occurring due tohomogeneous torsion of a beam
have been analysed. A second contribution to the shear stresses stem from bending or flexural
deformations of a beam and with a proper choice of coordinates, the two contributions decouple.
Figure 2–10 shows a cross-section exposed to bending without torsion. Correspondingly, the
loads per unit lengthqy andqz as well as the shear forcesQy andQz have been referred to the
shear centreS, the position of which is discussed in this section.
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Figure 2–10 Cross-section exposed to bending.

The cross-section has the external boundaryΓ0 and may have a number of cavities,N ,
bounded by the interior boundary curvesΓj , j = 1, 2, . . . , N . Again, a local arc-length co-
ordinatesj is defined along each boundary, orientated clockwise for allinterior boundaries,
j = 1, 2, . . . , N , whereas the arc-length coordinates0 along the outer boundary curve is orien-
tated anti clockwise. At any point along the outer and inner boundary curves, local right-handed
(x, nj , sj)-coordinate systems are defined as shown in Fig. 2–10. The(x, y, z)-coordinate sys-
tem with origin at the bending centreB is assumed to be a principal-axes coordinate system.

On the cross-section, the normal stressσxx as well as the shear stressesσxy andσxz are
acting. With reference to Eq. (2–7), these stresses fulfil the equilibrium equation

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0, (2–57)

whereσxx is determined from Navier’s formula (1–75),i.e.

σxx(x, y, z) =
N(x)

A
+

My(x)

Iy
z −

Mz(x)

Iz
y. (2–58)

It then follows that

∂σxx

∂x
=

dN

dx

1

A
+

dMy

dx

z

Iy
−

dMz

dx

y

Iz
= −

qx

A
+ (Qy + mz)

y

Iz
+ (Qz − my)

z

Iy
, (2–59)
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where the following equilibrium equations have been used inthe statement:

dN

dx
+ qx = 0,

dMy

dx
− Qz + my = 0,

dMz

dx
+ Qy + mz = 0. (2–60)

A stress functionT = T (x, y, z) is introduced with the defining properties

σxy =
∂T

∂y
, σxz =

∂T

∂z
. (2–61)

Hence,T is defined differently from the somewhat similar Prandtl’s stress function, cf. Eq. (2–
15). Insertion of Eqs. (2–59) and (2–61) into Eq. (2–57) provides the following Poisson partial
differential equation forT :

∂2T

∂y2
+

∂2T

∂z2
=

qx

A
− (Qy + mz)

y

Iz
− (Qz − my)

z

Iy
. (2–62)

With reference to Eqs. (2–10) and (2–11), the boundary conditions read

σxn = σxxnx + σxyny + σxznz = σxyny + σxznz = 0, (2–63)

wherenx = 0 because the beam is cylindrical. Insertion of Eq. (2–61) into this equation provides
the following homogeneous Neumann boundary conditions to be fulfilled on all exterior and
interior boundary curves:

∂T

∂n
=

∂T

∂y
ny +

∂T

∂z
nz = 0. (2–64)

The boundary value problems defined by Eqs. (2–14) and (2–22)for the warping function
and Prandtl’s stress function, respectively, are independent ofx, i.e. the solution applies for all
cross-sections of the beam. In contrast, the correspondingboundary value problem defined by
Eqs. (2–62) and (2–64) forT = T (x, y, z) must be solved at each cross-section defined byx,
where the shear stresses are determined. This is so, becauseqx, my, mz, Qy andQz entering
the right-hand side of Eq. (2–62) may vary along the beam. Thesolution to Eq. (2–62) with
boundary conditions given by Eq. (2–64) is unique save an arbitrary functionT0 = T0(x) which
has no influence on the shear stresses. The method can be applied to thick-walled or thin-walled
cross-sections with or without interior cavities. Normally the boundary value problem can only
be solved numerically based on a discretization of the Laplace operator entering Eq. (2–62). The
boundary value problem for the stress functionT has been summarised in Box 2.3.

Box 2.3 Boundary value problem for the stress function determining shear stresses in bending

For a given cross-section determined by the abscissa the stress-functionT = T (x, y, z) is obtained from
the Poisson partial differential equation

∂2T

∂y2
+

∂2T

∂z2
=

qx(x)

A
− (Qy(x) + mz(x))

y

Iz
− (Qz(x) − my(x))

z

Iy
, (y, z) ∈ A (2–65a)

with the homogeneous Neumann boundary conditions

∂T

∂n
= 0, (y, z) ∈ Γ0 ∪ Γ1 ∪ · · · ∪ ΓN . (2–65b)
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The indicated method is not applicable for hand-calculations. For this purpose a method
will be devised in the following sub-sections, which solvesthe problem for thin-walled open
cross-sections and closed thin-walled sections with few cells.

2.3.1 Shear stresses in open thin-walled cross-sections

Figure 2–12 shows the same open thin-walled cross-section as shown in Fig. 2–7, when ex-
posed to homogeneous torsion. Now the shear stressesσxs andσxn defined in local(x, n, s)-
coordinates are requested, caused by the shear forcesQy andQz acting through the shear centre
S. We shall return to the definition and determination of the shear centre later in this chapter.
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z

Qz

Qy

σxs

S
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n
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s

s = L

s = 0

t(s) Ω(s)

Figure 2–11 Cross-section exposed to bending.

The shear stress componentσxn still vanishes at the surfacesn = ± 1
2 t(s), cf. Eq. (2–34).

For continuity reasons, Eq. (2–43) remains valid in the interior of the wall,i.e.

σxn(x, n, s) ≃ 0. (2–66)

Then, with reference to Eq. (2–57), the equilibrium equation of stress components in the(x, n, s)-
coordinate system reduces to

∂σxx

∂x
+

∂σxs

∂s
≃ 0. (2–67)

From Eq. (2–58) follows thatσxx varies linearly over the cross-section. Thus it must be almost
constant over the thin wall and can be replaced by its value atthe midst of the wall. From
Eq. (2–67) it then follows thatσxs must also be approximately constant in then-direction,i.e.

σxs(x, n, s) ≃ σxs(x, s). (2–68)

The constancy of the shear stress componentσxs in the thickness direction has been illustrated
in Fig. 2–12. This variation should be compared to Eq. (2–34)for homogeneous torsion of an
open cross-section, where a linear variation withn is obtained as illustrated in Fig. 2–7.
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Figure 2–12 Differential element of a thin-walled cross-section.

A differential element with the side lengthsdx andds is cut free from the wall at the axial
coordinatex and at the arc-length coordinates, see Fig. 2–12. On the sections with the arc-length
coordinatess ands + ds, the shear forces per unit lengthH andH + dH are acting, where

H(x, s) =

∫ t/2

−t/2

σsx(x, n, s)dn ≃ σxs(x, s)t(s). (2–69)

Here it has been exploited thatσsx = σxs, and Eq. (2–68) has been utilised. On the sections
with the axial coordinatesx andx + dx, the normal stressesσxx andσxx + dσxx are acting (see
Fig. 2–12). Equilibrium in thex-direction then provides

(σxx + dσxx)t(s)ds − σxxt(s)ds + (H + dH)dx − Hdx = 0 ⇒

∂H

∂s
+ t(s)

∂σxx

∂x
= 0, (2–70)

where it has been utilised thatσxx has an ignorable variation in the thickness direction. It has
therefore been replaced with a constant value equal to the value present at the midst of the wall.
Alternatively, Eq. (2–70) may be obtained simply by multiplication of Eq. (2–67) witht(s) and
use of Eq. (2–69).

With H0(x) representing an integration constant, integration of Eq. (2–70) provides the so-
lution

H(x, s) = H0(x) −

∫ s

0

∂σxx

∂x
t(s)ds. (2–71)

Especially, in the open thin-walled section the boundary conditionσsx = 0 applies at the ends of
the profile, corresponding to the arc-length coordinatess = 0 ands = L, i.e.

H(x, 0) = H(x, L) = 0. (2–72)

Thus, for an open thin-walled cross-section, the integration constant in Eq. (2–71) isH0(x) = 0.
The partial derivative∂σxx/∂x is given by Eq. (2–59). In what follows it is for ease assumed

thatqx = my = 0. Equation (2–59) then reduces to

∂σxx(x, s)

∂x
=

Qy(x)

Iz
y(s) +

Qz(x)

Iy
z(s), (2–73)
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where(y(s), z(s)) denotes the principal-axes coordinate of a position on the wall determined by
the arc-length coordinates.

Then, insertion in Eq. (2–71) and use of Eq. (2–69) provide the following solution forσxs:

σxs(x, s) =
1

t(s)
H(x, s) = −

Qy(x)

t(s)Iz
SΩz(s) −

Qz

t(s)Iy
SΩy(s), (2–74a)

where it has been utilised thatH0(x) = 0 for the open section, and

SΩy(s) =

∫ s

0

z(s)t(s)ds =

∫

Ω

zdA, SΩz(s) =

∫ s

0

y(s)t(s)ds =

∫

Ω

ydA. (2–74b)

The quantitiesSΩy(s) andSΩz(s) denote the statical moment around they- andz-axes of the
area segmentΩ(s), shown with a dark grey signature in Fig. 2–12 and defined as

Ω(s) =

∫ s

0

t(s)ds =

∫

Ω

dA. (2–75)

Equation (2–74) is known asGrashof ’s formula. The formula is valid for Timoshenko as well
as Bernoulli-Euler beams with a thin-walled open cross-section. In this context it is noted that
Bernoulli-Euler beam theory is based on the kinematic constraint that plane cross-sections or-
thogonal to the beam axis in the referential state remain plane and orthogonal to the deformed
beam axis. In turn this implies that the angular strainsγxy and γxz vanish, and hence that
σxy = σxy = 0. Hence, the shear stresses in bending cannot be determined from the beam
theory itself. Instead, these are determined from Eqs. (2–66) and (2–74) which are derived from
static equations alone and, hence, are independent of any kinematic constraints.

The shear strain caused by the shear stressσxs is given as

εxs =
1

2G
σxs =

1

2Gt(s)
H(x, s). (2–76)

The shear strainεxs implies a warpingux0(x, 0) of the cross-section, additional to the dis-
placement in thex-direction caused by the axial force and the bending moments. The latter
is described by the kinematic conditions defined by Eqs. (1–11a) and (1–15) for Bernoulli-Euler
beam theory. Hence, the displacements of the cross-sectionrelative to the principal-axes coordi-
nate system can be written as

ux(x, s) = wx(x) −
dwy(x)

dx
y(s) −

dwz(x)

dx
z(s) + u0(x, s), (2–77a)

uy(x, s) = wy(x), (2–77b)

uz(x, s) = wz(x). (2–77c)

The componentus(x, s) of the displacement vectoru(x, s) in the tangentials-direction in the
local (x, n, s)-coordinate system shown in Fig. 2–12 is given as

us(x, s) = sTu(x, s) =

[

dy(s)
ds

dz(s)
ds

]T
[

ux(x, s)
uy(x, s)

]

=
dy(s)

ds
ux(x, s) +

dz(s)

ds
uy(x, s), (2–78)
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wheresT = sT (s) = [dy/ds, dz/ds] signifies the unit tangential vector. Then, the strain
εxs(x, S) follows from Eqs. (2–77) and (2–78):

εxs =
1

2

(

∂us

∂x
+

∂ux

∂s

)

=
1

2

(

dy

ds

dwy

dx
+

dz(s)

ds

dwz

dx
−

dy

ds

dwy

dx
−

dz

ds

dwz

dx
+

∂ux0

∂s

)

⇒

εxs =
1

2

∂ux0

∂s
. (2–79)

The warpingux0(x, s) is next determined by integration of Eq. (2–79):

ux0(x, s) = 2

∫ s

0

εxs(x, s)ds + u0(x). (2–80)

The arbitrary functionu0(x) is adjusted, so thatux0 = 0 at the bending centreB. Whenεxs is
determined from Eq. (2–76), the warping of the cross-section additional to displacements in the
x-direction predicted by Bernoulli-Euler beam theory can bedetermined by Eq. (2–80).

Example 2.7 Shear stresses and warping due to bending of a rectangular cross-section

Figure A shows a rectangular beam of heighth and thicknesst exposed to a shear forceQy. The bending
moment of inertia, the area segmentΩ(s) and static momentSΩz(s) around thez-axis become

Iz =
1

12
h3t, Ω(s) = st, SΩz(s) = −st

(

h

2
− s

2

)

. (a)

where the arc-length parameter is defined from the upper edgeof the profile,i.e. s = h
2

+ y. Then,
σxs = σxy is determined from Eq. (2–74), that is

σxy = −Qy

tIz
SΩz(s) = 6

(

s

h
− s2

h2

)

Qy

ht
=

3

2

(

1 − 4
y2

h2

)

Qy

ht
. (b)

Equation (b) specifies a parabolic distribution over the cross-section, whereσxy = 0 at the edgesy = ±h
2

in agreement with the boundary conditions, and the maximum value 3
2

Qy

ht
is achieved at the bending

centreB aty = 0.
Next, the warping is determined from Eqs. (2–76) and (2–80) together with Eq. (b):

ux0(x, s) = u0 +
1

G

∫ s

0

σxsds = u0 + 6
Qy

Ght

∫ s

0

(

s

h
− s2

h2

)

ds =
Qy

Gt

(

3
s2

h2
− 2

s3

h3
− 1

2

)

, (c)

whereu0 is adjusted, soux0 = 0 at the bending centre,i.e. at s = h
2

. With s = h
2

+ y, the warping
displacements become

ux0(y) =
Qy

4Gt

(

3
2y

h
−
(

2y

h

)3
)

. (d)

Equation (d) specifies a cubic polynomial variation, leading to an S-shape of the warping function. The
distribution ofσxy(y) andux0(y) has been shown in Fig. A. (continued)
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Figure A Rectangular cross-section subjected to bending: Area segment (left); shear stresses (centre); warping
(right). �

Example 2.8 Shear stresses due to bending of a double-symmetric I-profile

Figure A (left) shows a double-symmetric cross-section exposed to the shear forcesQy andQz . The wall
thickness is everywheret ≪ a, i.e. the thin-wall assumption applies. The cross-sectional area and the
principal bending moments of inertia become

A = 3at, Iy = 2 · 1

12
a3t =

1

6
a3t, Iz = 2 ·

(a

2

)2

at +
1

12
a3t =

7

12
a3t. (a)

Due to the symmetry, the bending and shear centres are coinciding.

Qy

Qz

x

y

z

ss

s

s

s

n

n

n

n

n

s1 s2

s3 s4

s5

t

t

t

a
2

a
2

a
2

a
2

B = S

Figure A Double-symmetricI-profile: Geometry (left); definition of arc-length coordinates and local coordinate
systems (right).

At first the shear stresses caused byQz are considered. For each of the four branches and the web of
the profile, arc-length coordinatessj and local right-handed(x,nj , sj)-coordinate systems are defined
as shown in Fig. A (right). At the free edge, the shear stresses areσxs = 0. Hence, the shear force per
unit lengthH(x, sj) vanishes at this point, and Eq. (2–71) becomes valid for eachbranch. (continued)
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QzQz

SΩy(s1) SΩy(s2)

SΩy(s3) SΩy(s4)

σxs(s1) σxs(s2)

σxs(s3) σxs(s4)1
8
a2t

1
8
a2t

3
4

Qy

at

3
4

Qy

at

B = SB = S

Figure B Double-symmetricI-profile: Distribution of statical moment of the area segment Ω(sj) around they-axis
(left); distribution of the shear stressesσxs(sj) from Qz (right).

On the five branches, the area segments becomeΩ(sj) = sjt. These have been shown with a dark grey
signature in Fig. A (right). For the flanges, the statical moments ofΩ(sj) around they-axis become

SΩy(s1) =
1

2
ts1(s1 − a), SΩy(s2) = −1

2
ts2(s2 − a), (b)

SΩy(s3) =
1

2
ts3(s3 − a), SΩy(s4) = −1

2
ts4(s4 − a). (c)

Further,SΩy = 0 along the web. The distribution has been shown in Fig. B (left).
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Figure C Double-symmetricI-profile: Distribution of statical moment of the area segment Ω(sj) around thez-axis
(left); distribution of the shear stressesσxs(sj) from Qy (right). (continued)
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The shear stressesσxs(sj) follow from Eq. (2–74):

σxs(s1) = −Qz

tIy
SΩy(s1) = 3

Qz

a3t
s1(a − s1), σxs(s2) = −3

Qz

a3t
s2(a − s2), (d)

σxs(s3) = 3
Qz

a3t
s3(a − s3), σxs(s4) = −3

Qz

a3t
s4(a − s4), σxs(s5) = 0. (e)

The distribution has been shown in Fig. B (right). The sign refers to the localx,nj , sj)-coordinate
system. Hence, a negative sign implies that the shear stressis acting in the negativesj-direction and,
hence, is co-directional toQz. Then, the shear stresses in the flanges are distributed parabolically in the
same way as stresses in the rectangular cross-section considered in Example 2.7. Each flange carries the
shear forceQy/2, and no shear force is carried by the web in the present case.

Next, the shear stresses caused byQy are analysed. The statical moment of the area segmentΩ(sj)
around thez-axis becomes:

SΩz(s1) = −1

2
ats1, SΩz(s2) = −1

2
ats2, (f)

SΩz(s3) =
1

2
ats3, SΩz(s4) =

1

2
ats4, SΩz(s5) = −a

2
at − 1

2
ts5(a − s5), (g)

and by Eq. (2–74) the shear stressesσxs(sj) are determined as

σxs(s1) = −Qy

tIz
SΩz(s1) =

6

7

Qy

a2t
s1, σxs(s2) =

6

7

Qy

a2t
s2, (h)

σxs(s3) = −6

7

Qy

a2t
s3, σxs(s4) = −6

7

Qy

a2t
s4, σxs(s5) =

6

7
(a2 + s5a − s2

5)
Qy

at
. (i)

The distribution ofΩ(sj) andσxs(sj) has been shown in Fig. C. �

2.3.2 Determination of the shear centre

So far in this section we have only considered double-symmetric cross-sections for which the
shear centreS coincides with the bending centreB. However, in the general case, the shear
centre will be different from the bending centre as suggested by Fig. 2–1. In any case, the shear
forcesQy andQz must be statically equivalent to the shear stresses integrated over the cross-
section,i.e.

Qy =

∫

A

σxydA, Qz =

∫

A

σxzdA. (2–83)

In the present case, we are concerned with bending uncoupledfrom torsion. Hence, the torsional
momentMx stemming from the shear stresses on the cross-section should vanish. According to
Eq. (2–25), this implies the identity
∫

A

((y − ys)σxz − (z − zs)σxy) dA = 0. (2–84)

Combining Eqs. (2–83) and (2–84) provides the relation for the coordinates of the shear centre:

−Qyzs + Qzys =

∫

A

(−zσxy + yσxz)dA. (2–85)
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For a thin-walled cross-section, this identity may be recast in terms of the local(x, s, n)-coordinates,
providing

−Qyzs + Qzys =

∫

L

h(s)σxs(x, s)t(s)ds, (2–86)

whereh(s) is the moment arm of the differential shear forceσxs(x, s)t(s)ds,

h(s) = y(s)
dz(s)

ds
− z(s)

dy(s)

ds
. (2–87)

It is noted that, with the given definition,h(s) may have positive as well as negative values.
Insertion of Eq. (2–74) into Eq. (2–86) provides the identity

−Qyzs + Qzys = −
Qz

Iy

∫

L

SΩy(s)h(s)ds −
Qy

Iz

∫

L

SΩzh(s)ds (2–88)

which holds for arbitraryQy andQz. This implies the following solutions for the coordinates of
the shear centre:

ys = −
1

Iy

∫

L

SΩy(s)h(s)ds, zs =
1

Iz

∫

L

SΩz(s)h(s)ds. (2–89)

In particular, for a thin-walled section without branching, SΩy(s) andSΩz(s) become

SΩy(s) =

∫ s

0

z(s)t(s)ds, SΩz(s) =

∫ s

0

y(s)t(s)ds. (2–90)

Hence, Eq. (2–89) involves a double integration with respect to the arc-length parameter over the
lengthL. We shall arrange the calculation in a way such that only a single line integral needs to
be evaluated.

x

y

z

Qz

Qy

S

B

s

s = L

s = 0

t(s)

h(s)

Ω(s)

ω(s)ds

Figure 2–13 Cross-section exposed to bending.
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At first the so-called sector coordinateω(s) with poleB is introduced. The sector coordinate
ω(s) is equal to the area shown in Fig. 2–13, delimited by the bending centreB and the area
segmentΩ(s). Thus,ω(s) is given as

ω(s) =

∫ s

0

h(s)ds. (2–91)

It follows thatω(s) may be considered as an integral ofh(s) with respect tos, i.e. d
dsω(s) = h(s).

Hence, from Eq. (2–90) follows that the derivation ofSΩy(s) and SΩz(s) with respect tos
become

d

ds
SΩy(s) = z(s)t(s),

d

ds
SΩz(s) = y(s)t(s). (2–92)

Then, integration by parts of Eq. (2–89) and use of Eq. (2–92)provides

ys = −
1

Iy

(

[

SΩy(s)ω(s)
]L

0
−

∫ L

0

z(s)ω(s)t(s)ds

)

(2–93)

Now, SΩy(L) = Sy = 0, because the(x, y, z)-coordinate system has origin in the bending
centre. Further, bothSΩy(0) = 0 andω(0) = 0, so the first term within the parentheses vanishes
in both limits and, hence,

ys =
Iωz

Iy
, Iωz =

∫ L

0

ω(s)z(s)t(s)ds =

∫

A

ωzdA. (2–94a)

Similarly, it can be shown that

zs = −
Iωy

Iz
, Iωy =

∫ L

0

ω(s)y(s)t(s)ds =

∫

A

ωydA. (2–94b)

The quantitiesIωy andIωz are denotedsector centrifugal moments. An arbitrary constantω0 can
be added toω(s) in Eq. (2–94) without changing the value ofIωz andIωy. This is so because
∫

A
ω0ydA = ω0

∫

A
ydA = 0 and

∫

A
ω0zdA = 0. Hence, the sector coordinate is determined

within an arbitrary constant.
As a third method, the coordinates of the shear centre may be determined from Eq. (2–86), if

the shear stressσxs(x, s) is calculated fromQy andQz separately. Thus,

ys =
1

Qz

∫

L

σxs(x, s)h(s)t(0)ds for Qy = 0, (2–95a)

zs =
1

Qy

∫

L

σxs(x, s)h(s)t(s)ds for Qz = 0. (2–95b)

Obviously, if the profile has a line of symmetry, then the shear centre is placed on this line.
Finally, a note is made regarding the notation in this chapter. Previously,ω(x, y) has denoted

thenormalised warping functionor, simply, the warping function. However, we shall later see
that for open thin-walled sections the warping function is identical to the sector coordinate, which
motivates the naming of the latter quantity.
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Example 2.9 Determination of the shear centre for an I-profile with a single line of symmetry

The thicknesses of the flanges and the web of the profile shown in Fig. A (left) are allt. Due to the
symmetry around they-axis, they-axis as well as thez-axis become principal axes. The bending centre
is placed as shown in the figure and the principal moments of inertia become:

Iy =
91

12
a3t, Iz =

1044

13
a3t. (a)

The profile is exposed to a horizontal shear forceQz, and the position of the shear centre will be deter-
mined both by Eqs. (2–89), (2–94) and (2–95). Due to the symmetry, the shear centre is placed on the
y-axis,i.e.zs = 0.

Qz

B x
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zS
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n3

n4

s1 s2

s3 s4

SΩy(s1) SΩy(s2)

SΩy(s3) SΩy(s4)

t

t

t

4a

6a

3a

36
13

a

42
13

a

2a2t

9
8
a2t

Figure A Single-symmetricI-profile: Geometry (left); definition of arc-length coordinates and distribution of static
moments (right).

For each of the four branches indicated in Fig. A (right), an arc-length parametersj and a local
(x, nj , sj) coordinate system are defined. The statical momentsSΩy(sj) =

∫

Ω
z(sj)t(sj)dsj become:

SΩy(s1) = −
∫ s1

0

(2a − s)tds1 = −1

2
(4a − s1)s1t, SΩy(s2) =

1

2
(4a − s2)s2t, (b)

SΩy(s3) = −
∫ s3

0

(

3

2
a − s3

)

tds3 = −1

2
(3a − s3)s3t, SΩy(s4) =

1

2
(3a − s4)syt. (c)

The shear stressesσxs(x, sj) are positive, when acting in the direction of the arc-lengthparametersj .
These follow from Grashof’s formula (2–74):

σxs(sj) = −Qz

tIy
SΩy(sj) = −12

91

Qz

a3t2
SΩy(sj). (d)

The distribution of shear stresses has been shown in Fig. B (left). (continued)
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Figure B Single-symmetricI-profile: Shear stresses from the shear forceQz with τ = Qz/(at) (left); distribution
of the sector coordinateω(s) (right).

The shear stress resultantsQ1 andQ2 in the top and bottom flanges become:

Q1 =
2

3
· 48

182
· 4at · Qz

at
=

64

91
Qz, Q2 =

2

3
· 27

182
· 3at · Qz

at
=

27

91
Qz. (e)

The shear centre then follows from Eq. (2–95):

Qzys = −Q1
36

13
a + Qz

42

13
a ⇒ ys = −90

91
a. (f)

Next, employing another approach, the moment armh(sj) defined by Eq. (2–87) is negative on the
branches described by arc length parameterss1 ands2, and positive along the arc-length parameterss2

ands3. Then, from Eq. (b) it follows that

∫

L

SΩy(s)h(s)ds

=

∫ 2a

0

−1

2
(4a − s1)s1t

(

−36

13
a

)

ds1 +

∫ 2a

0

1

2
(4a − s2)s2t

(

+
36

13
a

)

ds2

+

∫ 3a/2

0

−1

2
(3a − s3)s3t

(

+
42

13
a

)

ds3 +

∫ 3a/2

0

1

2
(3a − s4)s4t

(

−42

13
a

)

ds4

=
96

13
s4t +

96

13
a4t − 189

52
a4t − 189

52
a4t =

15

2
a4t. (g)

Then, from Eqs. (2–89) and (a) it follows that

ys = − 1
91
12

a3t
· 15

2
a4t = −90

91
a. (h)

This result is identical to the result achieved in Eq. (f). However, it is noted that the result in Eq. (h) has
been achieved without the determination of the shear stresses. Hence, the second approach may appear
to be simpler than the first approach, but it does not provide any information about the stress distribution.

(continued)
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Finally, the same calculation is performed by means of Eq. (2–94). The distribution of the sector
coordinateω(sj) =

∫ sj

0
h(s)ds with the poleB for each of the four branches becomes:

ω(s1) = −36

13
a

∫ s1

0

ds1 = −36

13
as1, ω(s2) =

36

13
as2, (i)

ω(s4) = −42

13
a

∫ s4

0

ds4 = −42

13
as4, ω(s3) =

42

13
as4. (j)

The sector centrifugal momentIωz =
∫

A
ωzdA =

∫

L
ω(s)z(s)t(s)ds becomes:

Iωz = 2

∫ 2a

0

(2a − s1) · 36

13
as1 · 2tds1 + 2

∫ 2a

0

(

−3

2
a + s4

)

· 42

13
as4 · 2tds4 = −15

2
a4t, (k)

where the symmetry of the integrandω(s)z(s) has been exploited. Then, from Eqs. (2–94) and (a) the
shear centre is determined as

ys = − 1
91
12

a3t

15

2
a4t = −90

91
a. (l)

Hence, the three different approaches lead to the same result. �

Example 2.10 Determination of the shear centre for a symmetric U -profile

The bending centre of theU -profile has the position shown in Fig. A. Since the profile is symmetric, the
indicated(x, y, z)-coordinate system is a principal axis system. The moments of inertia with respect to
the principal axes become:

Iy =
64

15
a3t, Iz =

26

3
a3t. (a)
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65
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Figure A SymmetricU -profile: Geometry (left); position of the shear centre (right).

Local arc length coordinatess1, s2 ands3 are introduced as indicated in Fig. B. The distributions of
the static momentsSΩy(sj) andSΩz(sj) are shown in the figure. The analytic expressions are given as

(continued)
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SΩy(s1) =

∫ s1

0

(

6

5
a − s1

)

2tds1 =

(

12

5
as1 − s2

1

)

t, (b)

SΩy(s2) =
4

5
a2t +

∫ s2

0

(

−4

5
a

)

tds2 =
4

5
at(a − s2), (c)

SΩy(s3) = −4

5
a2t +

∫ s3

0

(

−4

5
a + s3

)

2tds3 = −4

5
a2t − 8

5
as3t + s2

3t, (d)

SΩz(s1) =

∫ s1

0

(−a)2tds1 = −2as1t, (e)

SΩz(s2) = −4a2t +

∫ s2

0

(−a + s2)tds2 = −4a2t − as2t +
1

2
s2
2t, (f)

SΩz(s3) = −4a2t +

∫ s3

0

a · 2tds3 = −4a2t + 2as3t. (g)
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Figure B SymmetricU -profile: Distribution of the static momentsSΩy(sj) (left) andSΩz(sj) (right).
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Figure C SymmetricU -profile: Distribution of the shear stresses from the shear forcesQz with τz = Qz/(at)

(left) andQy with τy = Qy/(at) (right). (continued)
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82 Chapter 2 – Shear stresses in beams due to torsion and bending

The shear stresses follow from Grashof’s formula (2–74). Figure B (left) shows the distribution of
shear stresses fromQz, and Fig. B (right) shows the distribution fromQy. The position of the shear
centre is given by Eq. (2–95). Since the shear stressesσxs from Qz are distributed symmetrically around
thez-axis it follows thatys = 0, reflecting the fact that thez-axis is a line of symmetry.

The resulting shear forcesQ1 andQ2 in Fig. A then become

Q1 = 2t · 1

2
· 2a · 6

26
τy =

6

13
Qy, Q2 = t ·

(

2

3
· 3

52
+

6

13

)

2aτy = Qy. (h)

Finally, from Eq. (2–95) follows that

zs = − 1

Qy

(

Q1 · a +
4

5
a · Q2 + Q1a

)

= −112

65
a. (i)

Hence, for aU -profile the shear centre lies at a considerable distance outside the profile. �

2.3.3 Shear stresses in closed thin-walled sections

Figure 2–14 shows a closed single-cell section of a thin-walled beam. The shear forceH(x, s)
acting within the wall per unit length of the beam (see Fig. 2–12) in a corresponding open section
is uniquely determined by Eq. (2–71) due to the conditionH(x, 0) = H0(x) = 0 at the boundary
s = 0. However, in a closed sectionH(x, s) is not a priori known in one or more points of the
peripheryΓ1, for which reason the shear stresses cannot be determined from static equations
alone. Hence, a geometrical condition must be introduced, from which the initial valueH0(x) at
s = 0 can be determined. The derivation of this geometric condition will be considered at first.
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σxs

n

s

s
n

s

Qz

Qy

S

B

Γ1

s = L

s = 0

t(s)

Ω(s)

H0

Figure 2–14 Closed single-cell section exposed to bending.
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2.3 Shear stresses from bending 83

The arc-length coordinates is orientated clock-wise with an arbitrarily selected origin O.
Then, the local(x, n, s)-coordinate system is orientated with then-axis orientated toward the
interior of the cell. The shear stressσxs(x, s) follows from Eqs. (2–71) and (2–73):

σxs(x, s) =
1

t(s)
H(x, s) =

H0(x)

t(s)
−

Qy(x)

t(s)Iz
SΩz(x, s) −

Qz(x)

t(s)Iy
SΩy(x, s). (2–98a)

where the static moments of the area segmentΩ(s) are again given as

SΩy(s) =

∫ s

0

z(s)t(s)ds =

∫

Ω

zdA, SΩz(s) =

∫ s

0

y(s)t(s)ds =

∫

Ω

ydA. (2–98b)

Equation (2–98a) is the equivalence of Grashof’s formula (2–74) for a closed thin-walled section.
Unlike the case of the open section,H0(x) is generally different from zero and the determination
of H0(x) is part of the problem.

The shear strainεxs in the local(x, n, s)-coordinate system is given by Eq. (2–76) which is
valid for open as well as closed thin-walled sections. This implies the warpingu0(x, s) defined
by Eq. (2–80), where it is recalled thatu0(x, s) = 0 in the bending centreB. This is so, because
wx(x) has been defined as the total displacement in thex-direction ofB. Now, for the closed
section, the displacementux(x, s) must be continuous as a function ofs along the peripheryΓ1.
The axial and bending contributions,i.e. the first three contributions on the right-hand side of
Eq. (2–77), are always continuous. A possible discontinuity then stems from the warping. If the
profile is open, as illustrated in Fig. 2–12, the ends ats = 0 ands = L can move freely relatively
to each other. Hence, a warping discontinuity develops between these two endpoints. However, in
a closed section, the warping of these points must be identical. Hence, the geometrical condition
can be formulated as

ux0(x, 0) = u(x, L) = u0(x). (2–99)

Insertion of Eqs. (2–76) and (2–99) into Eq. (2–80) provides

u0(x) = u0(x) + 2

∫ L

0

εxs(x, s)ds = u0(x) +
1

G

∫ L

0

H(x, s)

t(s)
ds ⇒

∫ L

0

H(s)

t(s)
ds =

∮

Γ1

H(s)

t(s)
ds = 0. (2–100)

Insertion of Eq. (2–98a) gives the following formulation ofthe geometrical condition from which
the initial conditionH0 can be determined:

H0(x)

∮

Γ1

ds

t(s)
−

Qz

Iy

∮

Γ1

SΩy

t(s)
ds −

Qy

Iz

∮

Γ1

SΩz

t(s)
ds = 0. (2–101)

With H0(x) determined,H(x, s) and the shear stressσxs(x, s) can next be determined from
Eq. (2–98a).

Example 2.11 Shear stresses in a symmetric thin-walled single-cell section

Figure A shows a double-symmetric thin-walled single-cellprofile. The thickness is everywheret. We
want to determine the shear stresses from a shear forceQy acting at the shear centre. (continued)
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The cross-sectional area and moment of inertia around thez-axis become

A = 8at, Iz =
5

3
a3t. (a)

The origin of the arc length coordinate is chosen at the lowerleft corner. The corresponding distribution
of the static momentSΩz(s) =

∫ s

0
z(s)t(s)ds has been shown in Fig. B.

x

y

z

t(s)
B = S

2
3
a 2

3
a

a

Qy

Figure A Geometry of the symmetric rectangular thin-walled single-cell section.
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Figure B Distribution of the static momentSΩz(s) in the symmetric rectangular thin-walled single-cell section.

Next, the following line integrals are calculated:
∮

Γ2

ds

t
=

1

t
(a + 3a + a + 3a) =

8a

t
, (b)

∮

Γ1

SΩz(s)

t
ds

=
1

t

(

2

3
· 1

8
a2t · a − 1

2
· 3a · 3

2
a2t − 3

2
a2t · a − 2

3
· 1

8
a2t · a − 1

2
· 3a · 3

2
a2t

)

= −6a3. (c)

(continued)
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From Eq. (2–101) then follows that

H0 · 8a

t
− Qy

5
3
a3t

(−6a3) = 0 ⇒ H0 = − 9

20

Qy

at
. (d)

x

y

z
B = S

Qy

3τ

−18τ

−18τ

18τ

18τ

3τ

Figure C Shear stresses in the symmetric rectangular thin-walled single-cell section withτ = Qy/(40at).

The distribution of shear stressesσxs(x, s) follows from Eq. (2–98a) and has been indicated in Fig. C.
The arrows indicate the positive direction of the shear stresses. These will be referred to as theshear flow
in what follows, due to the analogous behaviour of water flowing down through a system of pipes. �

As shown in Example 2.11, a symmetric thin-walled single-celled profile exposed to a shear
force acting along the line of symmetry will have a symmetricdistribution of shear stresses.
Especially, the shear stress at the line of symmetry vanishes. Hence, if the origin of arc-length
coordinate is placed at the line of symmetry we must haveH0(x) = 0, entailing that a single-
celled symmetric profile can be analysed from the static equations alone.

For a thin-walled profile withN cells, arc-length parameterssj are introduced for all cells,
orientated clock-wise as shown in Fig. 2–15. The originsO1, O2, . . . , ON for the arc-length
coordinates are chosen arbitrarily. The shear forces per unit length H0j(x) at the origins are
unknown and must be determined from geometrical conditionsin addition to the static shear
flow equations. Similarly to Eq. (2–99) these are determinedby the conditions that the warping
must be continuous along all the peripheriesΓj of the cells.

At first, the static momentsSΩy andSΩz for the open profile in Fig. 2–15 are determined.
Especially, the variation ofSΩy(x, sj) andSΩz(x, sj) alongΓj as a function ofsj are registered.
Next, the calculation of the shear force per unit lengthHj(x, sj) within each cell can be arranged
as illustrated in Fig. 2–16. Firstly, the shear force per unit lengthHsj(sj) of the open, branched
profile is calculated, orientated in the direction of the arc-length coordinatesj . This is given by
Grashof’s formula (2–74),i.e.

Hsj(sj) = −
Qz

Iy
SΩy(sj) −

Qy

Iz
SΩz(sj). (2–103)
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Figure 2–15 Closed multi-cell section exposed to bending.
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Figure 2–16 Arrangement of calculations of shear forces per unit lengthwithin cells.
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2.3 Shear stresses from bending 87

In each cell, the initial conditions induce a constant shearforce per unit lengthH0j . Due to
the chosen sign convention, the net shear force on the periphery segmentΓjk between cellj and
cell k becomesHsj −H0k. Hence, on this segment the total shear force per unit lengthbecomes

Hj(sj) = Hsj(sj) + H0j − H0k. (2–104)

Continuity requires that Eq. (2–101) is fulfilled for allN cells,i.e.
∮

Γj

Hj(sj)

t(sj)
dsj = 0, j = 1, 2, . . . , N. (2–105)

Insertion of Eq. (2–104) leads to the followingN linear equations for the determination of
H01, H02, . . . , H0N :

N
∑

k=1

(H0j − H0k)

∫

Γjk

dsj

t(sj)
= −

∮

Γj

Hsj(sj)

t(sj)
dsj , j = 1, 2, . . . , N. (2–106)

The coefficient matrix in Eq. (2–106) is identical to this forthe determination of Prandtl’s stress
functionSj in the cells in the corresponding St. Venant torsion problem. With H0j determined
from Eq. (2–106),Hj(sj) can be calculated from Eq. (2–104). Finally, the shear stressesσxs(sj)
follow from Eq. (2–98a) with positive sign when acting in thedirection ofsj .

Example 2.12 Shear stresses in a single-symmetric double-cell section

The profile shown in Fig. A is identical to that considered in Example 2.11. However, a partition with the
wall thicknesst has been included as shown in the figure. The bending centreB is placed as indicated.
Because the section is symmetric around thez-axis the indicated coordinate system with origin inB is
a principal axis coordinate system. The section is still exposed to a shear forceQy acting through the
shear centreS. Due to the symmetry the shear centre is placed on thez-axis (yS = 0). Thezs will be
determined as a part of the solution. The cross-sectional area and inertial around thez-axis become

A = 9at, Iz =
7

4
a3t. (a)
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y

z

t(s) t(s) t(s)
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a
2

a
2
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Figure A Geometry of the rectangular thin-walled double-cell section.
(continued)
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Figure B Definition of the origins of the arc-length coordinates in the rectangular thin-walled double-cell section.
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Figure C Distribution of the static momentsSΩz(s1) andSΩz(s2) in the rectangular thin-walled double-cell section.

The origin of the arc-length coordinates are chosen as shownin Fig. B. The static momentsSΩz(s1)
andSΩz(s2) are next calculated with the sign and magnitude as indicatedin Fig. C. Especially, it is seen
thatSΩz(s1) = −SΩz(s2). The shear force per unit length in the open profile is given byEq. (2–103):

Hsj(sj) = −Qy

Iz
SΩz(sj), j = 1, 2. (b)

Next, Eq. (2–106) provides

(H10 − H20)
a

t
+ (H10 − 0)

a

t
+ (H10 − 0)

a

t
+ (H10 − 0)

a

t
= −

∮

Γ1

Hsj(s1)

t(s1)
ds1, (c)

(H20 − 0)
2a

t
+ (H20 − 0)

a

t
+ (H20 − 0)

2a

t
+ (H20 − H10)

a

t
= −

∮

Γ2

Hsj(s2)

t(s2)
ds2. (d)

The right-hand sides are calculated by insertion of Eq. (b) with the distribution ofSΩz(sj) shown in
Fig. C. The results become

∮

Γ1

Hsj(S1)

t(s1)
ds1 =

4

7

Qy

a3t2

(

2

3
a · a2t

8
− a

2
· a2t

2
− a

a2t

2
− 2

3
a

a2t

8
− s

2

a2t

2

)

= −4

7

Qy

t
, (e)

∮

Γ2

Hsj(s2)

t(s2)
ds2 = −4

7

Qy

a3t2

(

2a

2
· a2t + a · a2t +

2

3
a · a2t +

2a

2
a2t − 2

3
a

a2t

8

)

=
12

7

Qy

t
. (f)

(continued)
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2.3 Shear stresses from bending 89

Then, the following solutions are obtained for the initial values of the shear forces per unit length:

4H − 10 − H20 = −4

7

Qy

a
, −H10 + 6H20 = −12

7

Qy

a
, (g)

which implies that

H10 =
24

322

Qy

a
, H20 = − 88

322

Qy

a
. (h)

Next,Hj(sj) is calculated from Eqs. (2–103) and (2–104) along both peripheriesΓ1 andΓ2. Finally, the
shear stressesσxs(sj) are computed from Eq. (2–98a). Due to the constant wall thickness this reduces to

σxs(sj) =
1

t
Hj(sj), j = 1, 2. (i)

The flow of the shear stressesσxs has been shown in Fig. E.
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Figure D Distribution of the shear stresses in the rectangular thin-walled double-cell section withτ = Qy/(322at).
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Figure E Shear forces in the wall segments of the rectangular thin-walled double-cell section. (continued)
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Next, the shear forcesQ1, Q2, Q3, Q4 andQ5 in the wall segments shown in Fig. E are calculated.
These become:

Q1 =
1

2
(96 − 88) · 2a · t · 1

322

Qy

at
=

12

483
Qy, (j)

Q2 = (96 +
2

3
· 23) · a · t · 1

322

Qy

at
=

167

483
Qy, (k)

Q3 = (112 +
2

3
· 23) · a · t · 1

322

Qy

at
=

191

483
Qy, (l)

Q4 =
1

2
(68 − 24) · a · t · 1

322

Qy

at
=

33

483
Qy , (m)

Q5 = (68 +
2

3
· 23) · a · t · 1

1288

Qy

at
=

125

483
Qy. (n)

It is seen thatQ2 + Q3 + Q5 = Qy. The static equivalence (2–83) of the shear stresses is thenfulfilled.
The positionzs of the shear centre follows from Eq. (2–95):

zs = − 1

Qy

(

(Q4 − Q1)a − Q2 · 14

9
a + Q3 · 4

9
a + Q5

13

9
a

)

⇒ zs = − 80

1449
a. (o)

The position of the shear centre has been illustrated in Fig.E. �

Example 2.13 Distribution of shear stresses in open and closed sections due to bending and
St. Venant torsion

Q

QQ

Q
Q

Mx Mx

Figure A Shear flow in open and closed sections due to transverse shearforces and torsional moments.

Fig. A shows the shear flow in open and closed thin-walled sections exposed to a transverse shear forceQ
or a torsional momentM . For closed sections the shear stressesσxs(x, s) are uniformly distributed over
the wall thickness for both loadings. For open section this is only the case in the case for the shear force
loading, whereas the shear stresses for St. Venant torsion is linearly varying in the thickness direction
around the mid-line of the wall. �
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2.4 Summary

The computation of shear stresses in beams has been the focusof this chapter with detailed
explanation of the theory for thin-walled sections subjected to torsion and/or bending. A brief
summary of the main findings is given in the following.

Uncoupling of bending and torsionrequires that the shear force acts through the so-called shear
centre. The shear centre always lies on a line of symmetry within a symmetric cross-section.
Hence, the position of the shear centre coincides with that of the bending centre for double-
symmetric sections.

St. Venant torsion is characterised by the fact that the beam is allows to warp freely, leading
to a homogeneous twist of the cross-section along the beam axis. The homogenous torsion
problem can be defined in terms of the warping function or, alternatively, in terms of Prandtl’s
stress function.

Shear stresses due to homogeneous torsionvary linearly over the thickness of the wall in open
thin-walled profiles. However, in a closed thin-walled section with one or more cells, the
shear stresses due homogeneous torsion is homogeneous overthe thickness.

Homogeneous torsion induces warpingin a beam. The warping increases linearly with the tor-
sional moment. However, in a circular profile (a cylinder as well as a tube) there is no
warping.

The torsional stiffnesses of open and closed cross-sections are different . Thus, a closed cross-
section has a much higher torsional stiffness than an open cross-section with a similar cross-
sectional area. Likewise, the ultimate strength of a closedsection is higher than that of a
similar open section.

Shear stresses from bendingcan generally be analysed by means of the so-called stress func-
tion. However, this requires the use of a numerical scheme,e.g.the finite-element method.

Grashof’s formula defines the shear stresses from bending in open thin-walled sections. For
closed thin-walled sections, Grashof’s formula must be adjusted be an additional term that

Warping takes place due to bendingsince the shear stresses are accompanied by shear strains.
For a rectangular cross-section, the beam warps into an S-shape.

Shear flow is a graphical interpretation of the direction in which the shear stresses are acting on
the cross-section of a beam. In the case of bending, this forms an analogy to water streaming
down a system of pipes.

Internal walls in a section will not increase the torsional stiffness and strength significantly.
However, the inclusion of an internal wall oriented in the direction of the shear force will
provide an increase of the shear strength and stiffness.

The theory presented in this chapter can be used for the determination of the shear stresses
and warping deformations in beams subjected to any combination of bending and homogeneous
torsion. However, if torsion is prevented,e.g.at one end of the beam, another theory must be
applied as described in the next chapter.
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